1. Introduction

The leatherback sea turtle, Dermochelys coriacea (Vandelli 1761), the sole living species of the Family Dermochelyidae, is a very unusual turtle. Dermochelyidae diverged from other (non-marine) chelonians 100–150 million years ago (MYA; Wood et al., 1996) and represent a separate evolution of sea turtles from all other living species (which form the hard-shelled Family Cheloniidae). Adult leatherbacks are large animals (typically 300–500 kg), overlapping in size with many marine pinniped and cetacean species. However, in contrast to marine mammals, they start their aquatic life as 40 g hatchlings, so undergo a 10,000-fold increase in body mass during independent existence, which is unique among extant deep-diving air-breathing vertebrates. Tract wall thickness is graded, becoming progressively thinner from larynx to bronchi. In addition, cross-sectional shape becomes increasingly dorsoventrally flattened (more elliptical) from anterior to posterior. These characteristics ensure that the tract will collapse from posterior to anterior during dives. This study contains the first report of a double (=internally bifurcated) posterior section of the trachea; it is suggested that this allows continuous food movement along the esophagus without tracheal collapse. The whole upper respiratory tract (from larynx to lungs) has a vascular lining (thicker anteriorly than posteriorly) that appears to be a simple analog of the complex tubinates of birds and mammals. Our study confirmed that the leatherback tracheal structure represents a distinctive way of dealing with the challenges of diving in deep, cold sea water.

© 2013 Elsevier B.V. All rights reserved.
Jones, 2007; Davenport et al., 1990; Frair et al., 1972; Greer et al., 1973; James and Mrosovsky, 2004; Paladino et al., 1990). They even have extensive intracranial insulation to keep brain and salt glands warm (Davenport et al., 2009a). A recently published review (Wallace and James and Mrosovsky, 2004; Paladino et al., 1990) suggests the gigantothermic/endothermic status of the species in the context of metabolic rate, concluding that they are true endotherms (though see Bradshaw et al., 2007). There is good paleoecological evidence that the link between the distribution of Dermochelyidae into cool waters (and hence of gigantothermy/endothermy) is of great antiquity (~40 MYA; Albright et al., 2003).

Bostrom et al. (2010) have recently shown that even relatively small juvenile leatherback turtles (16–37 kg) can sustain significant temperature gradients between the body and the external environment. Adult leatherbacks are also accomplished divers and can be regarded as the living deep-diving vertebrate with the longest evolutionary history. They forage regularly to depths of several hundred meters, making tens of thousands of dives annually (Houghton et al., 2008). Dives beyond 1000 m were first inferred (Eckert et al., 1986, 1989) and subsequently confirmed (to levels deeper than 1200 m) by satellite tags (Houghton et al., 2008), though such deep dives are rare.

In terms of the respiratory system, all air-breathing vertebrate lineages have been constrained by the nature of structures evolved primarily for a terrestrial existence. These consist of lungs of varying degrees of complexity, plus the upper respiratory system: the larynx and the trachea, together with bronchi that connect the trachea to the lungs (in some groups via a branching bronchial tree). Lungs have little resistance to compression, while the tracheae and bronchi of terrestrial reptiles, birds and mammals have a series of complete-to-incomplete circular, semi-rigid cartilaginous rings interspersed with elastic connective tissue designed to maintain a patent airway and provide flexibility in the neck region.

Diving air-breathing vertebrates encounter a number of problems that are exacerbated by increasing depth and duration of dives (Kooyman, 1989). First, they require adequate blood and tissue oxygen supplies for each dive. Second, the air spaces of the respiratory system become compressed and this decreases buoyancy which affects descent and ascent phases of dives. Third, the possibility of highly compressed air being in close proximity to moving blood has the potential for causing N₂ accumulation and decompression sickness (DCS). Scholander (1940) developed a simple 'balloon and pipe' model that addressed the DCS problem. He envisaged that the rib cage and lungs of a diving mammal would be compressed and the latter finally collapse, at relatively shallow depths (30–50 m), displacing air into the rigid (and poorly vascularized) tubes of the upper respiratory system, where little gaseous exchange would be possible and the threat of DCS eliminated. In support of this concept, it was observed that the tracheae of diving mammals tended to have much wider tracheal rings, with far less connective tissue between them than terrestrial mammals, and that the rings were composed of more rigid materials, sometimes calcified. Marine mammals also had cartilage support much further down the bronchial tree than terrestrial mammals. Such bronchial trees are absent in marine reptiles.

Subsequently this model has become extensively modified as understanding of the complexity of diving physiology and biochemistry has improved. Evidence indicates that lung collapse and gaseous exchange can be delayed to depths of well over 100 m in some seals (Kooyman and Sinnott, 1982; Moore et al., 2011b). A recent comprehensive review (Hooker et al., 2012) argues that diving mammals “manage DCS” rather than eliminate it. Whereas several shallow divers (e.g. marine otters and extinct mosasaurs) feature calcified tracheal rings that help to provide the rigid pipes envisaged by Scholander (1940), this appears not to be the case in deep divers such as Weddell seals and northern elephant seals (both of which exceed 1000 m depth on many dives). They show reduced tracheal volume when compressed in hyperbaric chambers (Kooyman et al., 1970), and it is now clear that this is caused by ‘slipping’ of overlapping cartilaginous rings (Moore et al., 2011a). Bostrom et al. (2008) demonstrated that a compliant trachea causes increased depth of alveolar collapse and a gradual rather than abrupt collapse.

Davenport et al. (2009b) and Murphy et al. (2012) showed that adult Dermochelys (but not hatchlings) have a specialized tracheal structure that facilitates collapse of the respiratory tract during dives. As in other reptiles, the larynx and the tracheal structure begins at the anterior of the floor of the mouth. The adult larynx has a somewhat rectangular cross section and is thick-walled. At the rear of the hyoid plate (Frahers et al., 2010) it joins the trachea, which is a continuous long tube, consisting of fused, irregularly shaped, tracheal rings, with minimal amounts of connective tissue between them (Davenport et al., 2009b). The cross section of the trachea is near-elliptical in shape, but thinner-walled dorsally than ventrally. The material of this nearly-elliptical tube is predominantly uninterrupted, uncalcified cartilage. Davenport et al. (2009b) reported that the trachea could easily be compressed between the fingers, suggesting that it should collapse progressively given small pressure differences between lumen and exterior; this was confirmed by the biomechanical study of Murphy et al. (2012) who showed that the trachea had elastic properties ideally suited to repeated collapse and dilation. However, Murphy et al. (2012) also demonstrated mathematically that collapse of the upper respiratory tract would not be initiated until the lungs themselves had collapsed; they recognized that air moving from the collapsing lungs into the trachea and larynx would keep the latter two structures inflated until depths of several hundred meters had been attained.

Davenport et al. (2009b) also showed that the adult leatherback trachea was lined with an extensive, dense vascular plexus that should warm and humidify cold inspired air and possibly retain heat on expiration. They suggested that this structure was functionally equivalent to the nasal turbinates of birds and mammals and similarly diagnostic of endothermy.

All of the investigations of leatherback tracheal structure described above had the following short comings. First, all of the adult studies were conducted on sections of the upper respiratory tract between buccal cavity and the base of the turtle neck; no data were available from the more posterior parts of the trachea and bronchi between neck and lungs. Second, although some details of the structure in hatching leatherbacks were given by Davenport et al. (2009a), who showed that their trachea was circular in cross section and dominated by connective tissue rather than cartilaginous rings (which were narrow), no information about juvenile leatherback turtles has ever been published. Here we present data derived from three juvenile turtles (70.9–87.3 cm curved carapace length; 33.2–53.4 kg mass) that shed light on ontogenic changes in respiratory tract structure and also yield novel information about likely functionality. Turtles of this size have rarely been encountered, have unknown diving capabilities, but are now known to be capable of several degrees of endothermy (Bostrom et al., 2010).

2. Methods

The three study specimens of juvenile leatherbacks (see Table 1 for their basic dimensions and body masses) were collected by bycatch by observers (NOAA Fisheries Service, Pacific Islands Regional Office, Observer Program) on longline fishing vessels operating in the equatorial Pacific. All were immediately frozen after death and so were in good post-mortem condition. Turtles were thawed 24 h before necropsy, which entailed a complete external and internal examination with procurement of tissues for routine histopathology in attempts to confirm cause of death (drowning) (c.f. Work and Balazs, 2002, 2010). Note that previous work has indicated that drowning damages the lungs (Work and Balazs, 2010); there is no evidence that drowning damages the larynx or trachea. Histological study of the tracheal lining of a drowned adult leatherback (Davenport et al., 2009b) exhibited no obvious damage. The upper respiratory tracts (from larynx to anterior of bronchi) were harvested and refrozen before further investigation. After thawing,
the lengths of the larynx and trachea were established and the wall thickness measured with vernier calipers. Scapeloids were used to open the different parts of the upper respiratory tract and to cut cross sections. In the case of Specimen LL3596, the posterior part of the right bronchus was opened to inspect its structure and connection with the corresponding lung. A single hatchling leatherback (Museum code NHM 1969.2804) had been dissected by one of us (JD) at the Natural History Museum, London some years earlier (2008) and photographs of the tracheal system collected; these were revisited for comparison with the juveniles. The hatchling had originally been collected in French Guiana in 1969, so was from the Atlantic population of leatherbacks. Throughout the study photographs of dissections were taken with a Casio Exilim 10.1 megapixel digital camera.

3. Results

Fig. 1 exemplifies the gross anatomy of the upper respiratory tract of the juvenile leatherback turtles studied. As in adults and hatchlings, the larynx and anterior portion of the trachea are bound to the hyoid plate (see Fraher et al., 2010 for details of hyoid plate structure). From Fig. 2 it can be seen that, although tracheal rings (including the most anterior part associated with the hyoid plate) are very broad, with limited intervening connective tissue, they do not form the continuous tube reported for the anterior trachea of adults by Davenport et al. (2009b).

From Figs. 1–3 (plus Table 2) it can be seen that much of the length of the trachea (33–54% in the 3 specimens) had a posterior double structure which can be described as a partial or internal bifurcation. Externally this is evident in faint dorsal and ventral grooves (Figs. 1, 2, 3C). Internally (Fig. 3C), the double section had a central septum of cartilage of similar thickness to the lateral walls of the trachea.

Cross sections of the anterior ends of the bronchi (see Fig. 3D for example) had a rounded rectangular shape, with widths (16–18 mm) being much greater than dorsoventral height (about 8–9 mm). The dimensions were difficult to measure precisely as their walls were extremely thin (about 0.5 mm) and yielded to the lightest touch of the vernier calipers. Table 2 demonstrates that the wall thickness of the upper respiratory tract declines markedly from the larynx to the tracheal bifurcation. Mean thickness of the laryngeal walls was 3.2 mm, of the tracheal wall in the anterior undivided portion 1.6 mm (about half that of adults; Davenport et al., 2009b), and in the double, internally-bifurcated portion mean wall thickness was 1.0 mm. Taken with the thickness of the bronchial walls, it is evident that the upper respiratory tract becomes thinner-walled from anterior to posterior. This is associated with progressively increased compressibility, evident in the resistance to pinching to closure of the different sections of the tract.

From Fig. 3 and Table 2 it may be seen that the tract also becomes more dorsoventrally flattened from anterior to posterior too. In the larynx the mean ratio between external width and external dorsoventral height was about 1.3, in the anterior trachea 1.8 and in the bronchi about 2.0. Circular pipes withstand greater pressure differences across their walls without distortion than do elliptical pipes (e.g. Wild et al., 1977), so the progressively increasing flattening of the tract also implies increased compressibility. However, from Fig. 3C it can be seen that the posterior, double part of the trachea effectively consists of two tubes, each with a much more circular cross section (width:height ratios of about 0.8). This indicates that this part of the tract is less compressible than the anterior trachea or bronchi; this was also evident when the different sections were pinched between finger and thumb.

Fig. 4 shows that the bronchus ends deep in the lung structure where it connects with the lung tissues by a series of openings. This is similar to the images shown by Wynenken (2001) and is general for chelonians; the bronchial wall in this region was extremely flexible.

From the respiratory tract cross sections (Fig. 3), together with longitudinal sections (not shown) it was evident that the entire juvenile respiratory tract had a mucosal vascular lining, as reported for the adult anterior trachea by Davenport et al. (2009b). The lining was thicker in the larynx than in the trachea, where it was in turn thicker than in the bronchi.

4. Discussion

The results of our study demonstrate that there are significant structural differences between the upper respiratory tracts of hatchling, juvenile and adult leatherback turtles. There are ontogenic increases in the quantity of cartilage within the tracheal and bronchial walls, with the narrow cartilaginous rings present in the hatchlings becoming proportionally broader in the juveniles and (at least anteriorly) becoming essentially fused in the adult. The ring structure of the anterior trachea, still clearly defined by intervening connective tissue in the juveniles (this study), essentially disappears in the adult (Davenport et al., 2009b). It is also evident that increased proportions of cartilage (by comparison with hatchlings) are present in the posterior trachea and bronchi of juveniles, so that the progressive ontogenic development of a cartilaginous tubular structure affects the whole of the upper respiratory tract (Fig. 5).

These changes in longitudinal wall structure are also accompanied by changes in cross-sectional shape and a graded wall thickness. Murphy et al. (2012) established that the adult tracheal cartilage has hysteresis properties that facilitate repeated collapse and expansion. Here we show a decreased thickness of the cartilage of the wall of the trachea.

<table>
<thead>
<tr>
<th>Turtle ID</th>
<th>Sex</th>
<th>SCL (cm)</th>
<th>SCW (cm)</th>
<th>CCL (cm)</th>
<th>CCW (cm)</th>
<th>Body mass (kg)</th>
<th>Year and site of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL2103</td>
<td>Male</td>
<td>66.7</td>
<td>43.0</td>
<td>70.9</td>
<td>51.8</td>
<td>33.2</td>
<td>2006; 4°49.5′N; 163°43.0′W.</td>
</tr>
<tr>
<td>LL3596</td>
<td>Female</td>
<td>74.1</td>
<td>45.1</td>
<td>83.6</td>
<td>58.6</td>
<td>46.2</td>
<td>2010; 14°32.2′N; 167°07.3′W.</td>
</tr>
<tr>
<td>A50088</td>
<td>Male</td>
<td>83.0</td>
<td>47.6</td>
<td>87.3</td>
<td>59.6</td>
<td>53.4</td>
<td>2011; 11°20′2′S; 169°44.5′W.</td>
</tr>
</tbody>
</table>

Table 1: Details of three juvenile leatherback turtles studied (all drowned in N. Pacific oceanic longline fisheries and were immediately frozen). The guts of all three turtles contained food; no plastic was present. SCL = straight carapace length; SCW = straight carapace width; CCL = curved carapace length; CCW = curved carapace length.
upper respiratory tract from larynx to bronchi, combined with an increasingly elliptical (dorsoventrally flattened) cross section. This means that, during a dive, the posterior part of the tract will collapse earlier than the anterior part. Thus, air displaced from the highly compressible lungs will be progressively squeezed anteriorly as depth increases. At present the diving capabilities of juvenile leatherbacks...
are unknown, so the adaptive significance to them of this structure is unclear. However, this graded compliance of the respiratory tract will obviously be advantageous to deep-diving adults (c.f. Bostrom et al., 2008).

The extensive double portion (internal or partial bifurcation) of leatherback turtles’ tracheae appears not to have been remarked upon before beyond an extremely brief comment by Dunlap (1955), although Wyneken (2001), in a seminal study of general sea turtle anatomy stated (not in the context of the leatherback turtle) that “the bifurcation begins internally, anterior to the external division to form the bronchi”. Wyneken (2001) did not specify the species concerned, or the anterior limit of internal bifurcation; associated illustrations were mostly for the chelonid loggerhead turtle Caretta caretta though a figure of the airways of a Kemp's ridley turtle Lepidochelys kempi (visualized by a C-T scan) indicated a small amount of internal bifurcation (not remarked upon by the author). Lavín et al. (2007) present a C-T scan of a loggerhead turtle; although the trachea was not a major objective of their study, there is no sign of significant internal bifurcation.

Some internal bifurcation in the form of a carina (a forwardly-directed projection of the rearmost tracheal ring) is normal in a variety of air breathers including humans, but the internal bifurcation of leatherbacks is far more extensive than this, involving numerous tracheal rings. Double tracheae appear to be extremely unusual among vertebrates as Zeek (1951) remarked when reporting them for penguins and California sea lions (Zalophus californianus). She assigned no especial function to these, and it appears that no other author has considered this either. She illustrated the penguin trachea, which appears to be double throughout, but did not provide an illustration of the sealion trachea. In Website 1 (2013), the (undivided) trachea of the sealion is described as dividing into two bronchi at the top of the chest, and that the bronchi run parallel to each other for some distance; no biological significance of this layout is known. This description implies that the trachea is not in fact internally bifurcated and this has been confirmed by recent X-radiographs presented by Dennison et al (2009). It is also the case that not all penguin species possess a medial tracheal septum. Emperor and king penguins (Aptenodytes forsteri and Aptenodytes patagonicus respectively) appear to have undivided tracheae, while in the rock hopper penguin (Eudyptes chrysocome) the septum projects only 5 mm anteriorly from the carina (King and McLelland, 1989). The yellow-eyed penguin (Megadyptes antipode) has the lower third of the trachea divided (Hocken, 2002), but the African (or jackass) penguin (Spheniscus demersus) septum almost reaches the larynx (King and McLelland, 1989). All other published reports concern occasional instances of a central septum or double trachea in humans: these can cause medical problems, particularly for anesthesia (e.g. Fitzmaurice et al., 2010). This could also be the case for leatherbacks of this size class that are intubated for anesthesia. The septum, together with the progressive thinning of cartilage in the distal bronchus would prompt caution when intubating these animals to avoid trauma to the upper respiratory tract (a problem also for veterinary treatment of sealions; Website 1, 2013).

We believe that the double portion of the leatherback trachea is of adaptive significance. It coincides with the part of the trachea where it emerges from the neck region and is curved dorsally in the body cavity towards the dorsally-located lungs. The central septum and the near-circular tubular cross sections mean that this section of the trachea will not collapse as readily as the bronchi posteriorly. Why might this be important? The trachea of leatherbacks is closely associated with an unusually long, muscular and capacious esophagus. Leatherbacks eat huge quantities of gelatinous food at all stages of their life cycle (Fossette et al., 2012; Jones et al., 2012). Bels et al. (1998) demonstrated that juvenile Dermochelys have the ability to simultaneously catch prey and swallow material already in the rear part of the buccal cavity; they have a conveyor-like browsing and swallowing feeding strategy. This means that, when it breathes at the surface, a leatherback feeding in a rich patch of jellyfish will have a full, dilated esophagus that will press ventrally onto the trachea, especially where the latter curves dorsally into the anterior part of the body cavity. The double structure with a central septum will oppose occlusion of the trachea during inhalation and exhalation. This approach is in total contrast to that shown in the anatomy of the loopy seal (Hydrurga leptonyx), which also swallows large prey (penguins) whole, albeit intermittently, not continuously. The loopy seal has a trachea in which tracheal rings are replaced with transverse cartilaginous bars, so that the trachea collapses totally during feeding (Murphy, 1913).

Finally, this study confirms that the entire upper respiratory tract of juveniles has a vascular lining of the type reported for the adult anterior trachea by Davenport et al. (2009b). Their histological investigations revealed that the vascular plexus within the lining was characterized by longitudinal blood vessels (both arteries and veins, but predominantly large-bore venous vessels) with many cross connections, and links (via connective tissue between cartilaginous plates) with blood vessels outside the trachea. Our study provides further evidence of a counter-current exchange structure that will warm and humidify inhaled air, so that it will approach core body temperature and 100% relative humidity by the time it enters the lungs. There may also be some heat recovery too during exhalation. Unlike turbinates of birds and mammals, where a highly convoluted vascular structure with a great surface area exchanges heat and water over a short linear distance (e.g. Geist, 2000),

Table 2

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Larynx</th>
<th>Trachea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length External width</td>
<td>External height</td>
</tr>
<tr>
<td>LL2103</td>
<td>31.0</td>
<td>15.8</td>
</tr>
<tr>
<td>A50088</td>
<td>49.0</td>
<td>19.5</td>
</tr>
<tr>
<td>LL3596</td>
<td>36.0</td>
<td>17.3</td>
</tr>
</tbody>
</table>

* Dorsal ventral measurement.
b Measured in anterior undivided region of trachea.

Fig. 4. Junction of bronchus and lung in leatherback specimen LL3596.
the heat exchangers of the leatherback upper respiratory tract are long and simple. Geist (2000) associates turbinate evolution with the high tidal respiratory volume and high metabolic rate of birds and mammals, which have metabolic rates around an order of magnitude higher than reptiles of comparable body mass. The metabolic rate of leatherbacks, although controversial (Bradshaw et al., 2007; Wallace and Jones, 2008) is undoubtedly lower than in marine mammals of comparable size, so simple heat exchangers presumably suffice. Leatherback turtles show some physiological convergence (e.g. high blood hematocrit, high tissue myoglobin) with deep diving mammals, but have much lower tidal volumes (Lutcavage et al., 1990), despite having more complex lungs than other sea turtles (Wynenken, 2001). The only other deep divers known to have vascular tracheal linings are some cetaceans (Cozzi et al., 2005; Bagnoli et al., 2011; Davenport et al., in press), but their tracheae are extremely short (because cetaceans effectively are neckless, and the trachea is not connected to the buccal cavity). As cetacean tidal volumes are very high (~90% of lung volume; Wartzok, 2002), the velocity of air passing over these short lengths of vascular tissue must be considerable, making a turbinate-like function improbable as there would be insufficient time for significant heat exchange (Davenport et al., in press). In contrast, the long trachea and relatively low tidal volume of the leatherback should provide plenty of time for effective heat transfer.

A laryngeal–bronchial vascular lining has the theoretical potential to create problems of N₂ accumulation (and hence DCS) during dives when the upper respiratory tract will be full of air under pressure. If blood flowed freely though this lining during a dive, nitrogen from the tracheal air could be transferred elsewhere within the body, causing DCS on ascent. However, blood is presumably either displaced from the mucosal plexus to the blood vessels surrounding the trachea during dives (when the warming function is not required) (cf. Davenport et al., 2005b), or the blood remains in the lining and flow is restricted.

This study confirms that the upper respiratory tract of the leatherback turtle, apparently uniquely among living deep-diving air breathers, shows marked changes during growth from hatching to adult. These culminate in the development of a complex collapsible and highly-vascularized structure that provides a distinctive approach to dealing with the challenges of diving into deep, cold sea water. In other deep divers (penguins, pinnipeds and cetaceans), there is no life history equivalent of the long period of inability to dive that is characteristic of leatherbacks after hatching; they are probably surface foragers for several years. In contrast, young penguins, seals and cetaceans have to be able to dive within weeks/months of either entering the water or weaning (in the case of mammals). Our study suggests that there is considerable scope for further investigation of tracheal function and development. The double trachea of some penguin species merits further study, particularly as birds have proportionately larger tracheal and bronchial volumes (and much more efficient lung ventilation by virtue of air sacs and one-way airflow through the parabronchi than those of mammals of similar size (Schmidt-Nielsen, 1997)). The development of tracheal rings (including the calcification exhibited by some shallow-diving species; Tarasoff and Kooyman, 1973) of aquatic mammals before and after birth would also be a fruitful area for future investigation.

Authors’ contributions

The work presented here was carried out in close collaboration between all authors. JD wrote the first draft of the paper and the final revision; all other authors contributed to refining and finalizing the manuscript.

Disclosure statement

We wish to confirm that there are no known conflicts of interest associated with this publication and that there has been no financial support for this work that could have influenced its outcome. The manuscript has been read and approved by all named authors.

Acknowledgments

We are grateful to Giulia Anderson, Shandell Brunson, Shawn Murakawa and Marc Rice for help with the necropsy. John Davenport acknowledges the good offices of T. Todd Jones and George Balazs who invited him to participate in leatherback dissections at NOAA Fisheries, Pacific Islands Fisheries Science Center, Hawaii. We are also grateful to Philip Rainbow and Colin McCarthy, both of the Natural History Museum London, for facilitating dissection of an Atlantic hatching leatherback. Finally we thank two anonymous reviewers whose comments have significantly improved the paper. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Fig. 5. Trachea of hatchling leatherback turtle. A. Ventral view of anterior trachea. Note narrow cartilaginous rings and broad intervening connective tissue. B. Ventral view of posterior part of trachea and bifurcation into bronchi. White arrow indicates ventral groove of partially-bifurcated section of trachea. Note that cartilaginous rings are broader than in anterior portion of trachea.