Molecular Phylogeny of Babesia poelea from Brown Boobies (Sula leucogastei) from Johnston Atoll, Central Pacific
Author(s): Michael J. Yabsley, Thierry M. Work, Robert A. Rameyer
Published by: The American Society of Parasitologists
Stable URL: http://www.jstor.org/stable/40058507

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=asp.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Molecular Phylogeny of *Babesia poelea* From Brown Boobies (*Sula leucogaster*) From Johnston Atoll, Central Pacific

Michael J. Yabsley, Thierry M. Work*, and Robert A. Rameyer*, Southeastern Cooperative Wildlife Disease Study and Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602. e-mail: myabsley@uga.edu, *U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, P.O. Box 50167, Honolulu, Hawaii 96850.

ABSTRACT. The phylogenetic relationship of avian Babesia with other piroplasms remains unclear, mainly because of a lack of objective criteria such as molecular phylogenetics. In this study, our objective was to sequence the entire 18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA gene and partial β-tubulin gene of *B. poelea*, first described from brown boobies (*Sula leucogaster*) from the central Pacific, and compare them to those of other piroplasms. Phylogenetic analyses of the entire 18S rRNA gene sequence revealed that *B. poelea* belonged to the clade of avian piroplasms previously detected in humans, domestic dogs, and wild ungulates in the western United States. The entire ITS 1, 5.8S, ITS 2, and partial β-tubulin gene sequence shared conserved regions with previously described *Babesia* and *Theileria* species. The intron of the β-tubulin gene was 45 bp. This is the first molecular characterization of an avian piroplasm.

Piroplasms are one of the most common parasites of mammals. Many species of piroplasms can cause severe disease in their mammalian hosts and thus are of considerable medical and veterinary importance (Homer et al., 2000). The majority of piroplasms have been described based entirely on morphology and/or host. However, morphology and host species often are insufficient to identify them to species because multiple species of morphologically identical species can infect the same host, or multiple host species may be infected with a single piroplasm species (Kjemtrup, Kocan et al., 2003). The recent use of molecular tools has clarified the classification of mammalian piroplasms into 4 primary groups, i.e., *Babesia* species sensu stricto, the *Theileria* and *Cytospora* species, the western clade piroplasms, and *Babesia microti* and related small babesiae (Kjemtrup, Kocan et al., 2000; Kjemtrup, Thormod et al., 2000). The *Babesia* species sensu stricto clade has been subdivided further into the babesids and the ungulibabesids (Cayado-Fornello et al., 2003).

The taxonomic status of the avian piroplasms has been confusing because all species have been described based on morphology and either assigned to various genera (*Babesia*, *Nuttallia*, *Sogodiana*, and *Babesioides*) or confused with *Plasmodium*, *Haemoproteus*, or *Aegypti-* *anella* (Peirce, 2000). Peirce (1975) transferred all 14 described avian piroplasms from 14 avian families to *Babesia*. Morphologically, the avian piroplasms resemble red blood stages of *Babesia*, *Theileria*, and *Cytospora*. The *Babesia* species are characterized by intracytoplasmic crythrocytic development, lack of hemocyanin pigment, presence of ring and amoeboid forms, development of flask shaped or cruciform tetrad schizonts, and lack of exoerythrocytic schizogony. The absence of exoerythrocytic schizonts in avian *Babesia* argued against their inclusion in the *Theileria* or *Cytospora* (Peirce, 2000). Schuremkova (1938) reported schizonts in peripheral leucocytes and reticuloendothelial cells of *B. moshkovskii* from vultures (*Gypaetus barbatus*); however, Laird and Lari (1957) thought these structures were host chromatin. No schizonts were seen when *B. moshkovskii* was re-described from the griffon vulture (*Gyps fulvus*) (Merino et al., 2002). Similarly, histologic examination of tissues and blood smears from birds infected with other *Babesia* species (including *B. poelea*) has also not revealed any evidence of exoerythrocytic schizonts (Work and Rameyer, 1997, Peirce, 2000).

The phylogenetic relationship of avian *Babesia* to mammalian piroplasms remains unclear, mainly because of a lack of additional objective criteria such as molecular phylogenetics, to justify the present classification in *Babesia*. Our objective was to sequence the entire 18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA gene and a fragment of the β-tubulin gene of *B. poelea* and compare these sequences to those of other piroplasms. *Babesia poelea* was first described from brown boobies (*Sula leucogaster*) from Sand Island, Johnston Atoll, central Pacific (Work and Rameyer, 1997). A morphologically similar parasite has been detected in masked boobies (*Sula dactylatra melanops*) from Desmoenfesd Island, Amirantes, Indian Ocean (Peirce and Fear, 1978). Blood samples from brown boobies were collected at Johnston Atoll National Wildlife Refuge (16°34'N, 169°31'W) located approximately 1,154 km southwest of Honolulu, Hawaii. Juvenile birds were captured in July 1995 using hand nets, and blood was collected from the cutaneous ulnar vein into EDTA. Blood smears were stained with Wright's Giemsa (DifQuick; Fisher Scientific, Pittsburgh, Pennsylvania), and parasites quantitated (Work and Rameyer, 1997). Remaining blood was frozen at ~70 °C. For this study, samples from the 3 birds with the highest *B. poelea* parasitemias (~2% each) were selected for DNA extraction and phylogenetic analyses.

For PCR, DNA was extracted from 10 μl of whole blood using the GFX Genomic Blood DNA Purification Kit (Amersham Pharmacia Bio-tech, Piscataway, New Jersey) following the manufacturer's protocol. Primary outside amplification for the *Babesia* 18S rRNA gene was done using 5 μl of DNA in a 25 μl reaction containing 10 mM Tris-Cl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.2 mM each dNTP (Promega, Madison, Wisconsin), 2.5 units Taq DNA Polymerase (Promega), and 0.8 μM of primers 5'-(CCTGTTGTATCTCTCCACTGT) and B (Medlin et al., 1989). Cycling parameters for the primary amplification was 94 °C for 1 min followed by 30 cycles of 94 °C for 1 min, 48 °C for 1 min, 72 °C for 2 min, and a final extension at 72 °C for 5 min. For the nested PCR, 1 μl of primary product was used as template in a 25 μl reaction containing the same PCR components, except primers 5'1V2 (5'-CAATGCTGCTCTGAAACTGAACTGATT) and F (Gubbelcs et al., 1999) were used. Cycling conditions were the same as previous reaction except the annealing temperature was 52 °C or 50 °C, respectively. The entire ITS1, 5.8S, ITS2, and partial 28S rRNA genes were amplified as previous described using primers 1055F and 1ITSr in a primary reaction and the primers ITSF' and LSU500 in a secondary reaction (Kocan et al., 2003).

Primary outside amplification of the β-tubulin gene was done using 5 μl of DNA in a 25 μl reaction containing the same PCR components as the 18S rRNA PCR except for the use of primers F34 and R323 (Caccio et al., 2000). For the nested PCR, 1 μl of primary product was used as template in a 25 μl reaction containing the same PCR components except primers F79 and R206 were used (Caccio et al., 2000). Cycling parameters for both primary and secondary reactions were 94 °C for 3 min followed by 35 cycles of 94 °C for 30 sec, 62 °C for 30 sec, and 72 °C for 1 min (Caccio et al., 2000).

To prevent contamination, DNA extraction, primary and secondary amplification, and product analysis were done in separate dedicated areas. Two negative water controls were included in each set of DNA extractions, and 1 water control was included in each set of primary and secondary PCR reactions. Representative products were purified with a Microcon spin filter (Amicon Inc., Beverly, Massachusetts), sequenced at MWG-BIOTECH (High Point, North Carolina), and sequences compared to those of GenBank.

Sequences obtained from this study and from other piroplasms stored in GenBank (Fig. 1) were aligned using the multisequence alignment ClustalX program (Thompson et al., 1994). Phylogenetic analyses were conducted using the MEGA (Molecular Evolutionary Genetics Analysis) version 3.1 program (Kumar et al., 2004) with the neighbor-joining algorithm using the Kimura 2 parameter model and maximum parsimony using a heuristic search. The GenBank accession numbers for the
18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA and β-tubulin gene sequences of *B. poelea* were determined for a single sample of *B. poelea* using the nested PCR protocol (5.18 and F/R); the sequence of these amplicons was identical to the large amplicon. Alignment of the entire 18S rRNA gene sequence of *B. poelea* with related piroplasms and *P. falciparum* (as outgroup) resulted in an alignment 2,087 bp in length, of which 1,070 were invariant, 306 variable characters were parsimony uninformative, and 416 were parsimony informative.

Both neighbor-joining and maximum parsimony analyses placed *B. poelea* in the clade that included the piroplasms reported from wildlife, humans, and domestic dogs (previously designated *B. gibsoni*) from the western United States (Kjemtrup, Kocan et al., 2000; Kjemtrup, Thomford et al., 2000) (Fig. 1). Both analyses produced trees with similar topology and the same major clades of piroplasms previously reported (Kjemtrup, Kocan et al., 2000; Kjemtrup, Thomford et al., 2000; Gaethert and Telford, 2003; Criado-Fornelio et al., 2003), but the separation of the western piroplasm and *Theileria*/Cyatuxozoon clades in the maximum parsimony analysis had lower bootstrap support (66%) (data not shown). The highest percent identity to *B. poelea* was observed for the western piroplasms from humans, mule deer, bighorn sheep (90.6–90.9%), followed by the *Theileria* species (90.0–90.2%).

Based on sequence analysis, the ITS-1, 5.8S, and ITS-2 regions were 421 bp, 154 bp, and 281 bp in length, respectively. All 3 gene regions were determined for 2 samples of *R. poelea* and were found to be identical for each bird sample. Little identity was shared between *B. poelea* and other piroplasms (available in GenBank) in the ITS-1 region (30.7–40.1%) and the ITS-2 region (41.3–50%). Limited 28S rRNA gene sequences for piroplasms are available for comparison with the partial 28S rRNA gene sequence (221 bp) determined for *B. poelea* in this study.

Amplification of a fragment of the β-tubulin gene of *B. poelea* resulted in a 182 bp amplicon that had several conserved regions with other *Babesia* and *Theileria* species (Fig. 2). An intron of 45 bp was present in *B. poelea*; this intron previously has been shown to be variable among piroplasm species (Cascio et al., 2000). *Babesia poelea* had similar sequence identity to both *Babesia* species (68.6–81.8%) and *Theileria* species (68.6–73.7%), however, no sequences for the β-tubulin exon region are available for the western piroplasms.

This study is the only extant molecular characterization of an avian piroplasm and reveals that *B. poelea* is most closely related to the western clade of piroplasms, a group distinct from other piroplasms (Kjemtrup, Kocan et al., 2000; Kjemtrup, Thomford et al., 2000). The inclusion of *B. poelea* within the western piroplasm clade was well supported by both phylogenetic analyses. The western clade includes piroplasms from humans, mule deer, fallow deer, bighorn sheep, and domestic dogs (Kjemtrup, Kocan et al., 2000; Kjemtrup, Thomford et al., 2000). The western piroplasms initially were believed to be closely related to the *Theileria*/Cytuxozoon clade in the ITS-1 region (30.7–40.1%) and the ITS-2 region (41.3–50%). Limited 28S rRNA gene sequences for piroplasms are available for comparison with the partial 28S rRNA gene sequence (221 bp) determined for *B. poelea* in this study.

Amplification of a fragment of the β-tubulin gene of *B. poelea* resulted in a 182 bp amplicon that had several conserved regions with other *Babesia* and *Theileria* species (Fig. 2). An intron of 45 bp was present in *B. poelea*; this intron previously has been shown to be variable among piroplasm species (Cascio et al., 2000). *Babesia poelea* had similar sequence identity to both *Babesia* species (68.6–81.8%) and *Theileria* species (68.6–73.7%), however, no sequences for the β-tubulin exon region are available for the western piroplasms.

This study is the only extant molecular characterization of an avian piroplasm and reveals that *B. poelea* is most closely related to the western clade of piroplasms, a group distinct from other piroplasms (Kjemtrup, Kocan et al., 2000; Kjemtrup, Thomford et al., 2000). The inclusion of *B. poelea* within the western piroplasm clade was well supported by both phylogenetic analyses. The western clade includes piroplasms from humans, mule deer, fallow deer, bighorn sheep, and domestic dogs (Kjemtrup, Kocan et al., 2000; Kjemtrup, Thomford et al., 2000). The western piroplasms initially were believed to be closely related to the *Theileria*/Cytuxozoon clade in the ITS-1 region (30.7–40.1%) and the ITS-2 region (41.3–50%). Limited 28S rRNA gene sequences for piroplasms are available for comparison with the partial 28S rRNA gene sequence (221 bp) determined for *B. poelea* in this study.

Amplification of a fragment of the β-tubulin gene of *B. poelea* resulted in a 182 bp amplicon that had several conserved regions with other *Babesia* and *Theileria* species (Fig. 2). An intron of 45 bp was present in *B. poelea*; this intron previously has been shown to be variable among piroplasm species (Cascio et al., 2000). *Babesia poelea* had similar sequence identity to both *Babesia* species (68.6–81.8%) and *Theileria* species (68.6–73.7%), however, no sequences for the β-tubulin exon region are available for the western piroplasms.
analysis. Additional sequence information would be more informative, but attempts to amplify a larger sequence using other sets of published primers (Goethert and Telford, 2003; Zamoto et al., 2004) have failed (M. Yabesly, unpubl. obs.).

This study included only a single Babesia species from 3 individuals of the brown booby from the same geographic area. Future studies that include additional avian Babesia would help clarify the relationships of avian to mammalian piroplasms. Many avian Babesia have been described based on an assumed host family specificity, despite overlap of several morphologic characters, e.g., size of ring form and morphology of merozoites (Pierce, 2000). Because of the difficulties in conducting cross-transmission studies to investigate host specificity, molecular studies, such as the present study, can be used to investigate host specificity and the diversity of avian piroplasms as done for mammals (Goethert and Telford, 2003). Brown boobies are found throughout the world in tropical oceans, but B. poeles has been reported only from the brown booby population on Johnston Atoll in the Pacific Ocean, although infections have been detected in brown boobies from the island of Oahu, Hawaii (T. Work, unpubl. obs.). Molecular analyses of avian piroplasms from other locations and hosts are needed to better understand the phylogeny of this intriguing group of parasites.

LITERATURE CITED

