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Abstract. Researchers and wildlife managers increasingly find themselves in situations
where they must deal with infectious wildlife diseases such as chronic wasting disease,
brucellosis, tuberculosis, and West Nile virus. Managers are often charged with designing and
implementing control strategies, and researchers often seek to determine factors that influence
and control the disease process. All of these activities require the ability to measure some
indication of a disease’s foothold in a population and evaluate factors affecting that foothold.
The most common type of data available to managers and researchers is apparent prevalence
data. Apparent disease prevalence, the proportion of animals in a sample that are positive for
the disease, might seem like a natural measure of disease’s foothold, but several properties, in
particular, its dependency on age structure and the biasing effects of disease-associated
mortality, make it less than ideal. In quantitative epidemiology, the ‘‘force of infection,’’ or
infection hazard, is generally the preferred parameter for measuring a disease’s foothold, and
it can be viewed as the most appropriate way to ‘‘adjust’’ apparent prevalence for age
structure. The typical ecology curriculum includes little exposure to quantitative epidemio-
logical concepts such as cumulative incidence, apparent prevalence, and the force of infection.
The goal of this paper is to present these basic epidemiological concepts and resulting models
in an ecological context and to illustrate how they can be applied to understand and address
basic epidemiological questions. We demonstrate a practical approach to solving the
heretofore intractable problem of fitting general force-of-infection models to wildlife
prevalence data using a generalized regression approach. We apply the procedures to
Mycobacterium bovis (bovine tuberculosis) prevalence in bison (Bison bison) in Wood Buffalo
National Park, Canada, and demonstrate strong age dependency in the force of infection as
well as an increased mortality hazard in positive animals.

Key words: apparent prevalence; Bison bison; bovine tuberculosis; force of infection; infection hazard;
infection-specific mortality hazard; left truncation; logistic regression; Mycobacterium bovis; proportional
hazards models; wood buffalo.

INTRODUCTION

Cumulative incidence vs. apparent prevalence:

the force of infection

Increasingly, researchers and wildlife managers find

themselves in situations where containment, control,

and eventual elimination of infectious wildlife diseases

are central goals. Well-publicized examples include

chronic wasting disease, tuberculosis, brucellosis, and

West Nile virus. Inevitably, in dealing with this disease,

it becomes necessary to have some quantitative measure

of a disease’s foothold in a population. Typical

questions that are asked are whether a disease’s foothold

is changing, and what factors are associated with the

strength of the foothold. The most common type of data

collected from disease systems in free-ranging animals is

apparent prevalence, defined as the proportion of

animals in a sample that test positive for the disease of

interest. At first consideration, apparent prevalence

might seem like a suitable measure of the disease’s

foothold. Indeed, in many wildlife disease situations,

apparent prevalence has been the focus of analysis and

evaluation. However, as we will consider in greater

detail, apparent prevalence is usually a less-than-ideal

comparative measure because of its strong dependency

on age structure of the sample. The goal of this paper is

to present a general consideration of infectious disease

dynamics and to show how this leads to a general

approach for analyzing apparent prevalence data that

naturally adjusts for age structure and allows for the

testing of sharply focused epidemiological hypotheses.

The basic problem that we address is estimating the rate

at which negative animals become positive: the force of

infection. The force of infection is a key quantity in its

own right, and it forms the foundation for the much

more challenging problem of estimating the trans-

mission rate, the rate at which positive animals infect

negative animals (Farrington et al. 2001).
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There is always some debate with respect to what it

means to say that an animal is infected. In reality, the

true infection state of an animal is usually difficult to

define, let alone measure. We adopt a purely operational

approach based on some prescribed diagnostic test

outcome. We assume that a well-defined test is applied

to the subject animal: the outcome of the test is either

positive or negative. This test could be based on clinical

signs, serology, immunohistochemistry, polymerase

chain reaction (PCR), or some other methodology. It

is assumed that the test outcome is associated (i.e., both

sensitive and specific) with some meaningful underlying

irreversible disease state, reasonably referred to as the

state of ‘‘being infected.’’ The extent to which the

applied test is a good surrogate for this state of being

infected will determine the biological interpretability of

the results, although the analyses are always valid if the

interpretation is restricted to just the narrow sense of

test outcomes.

For ease of presentation, unless we state otherwise, it

should be assumed that we are dealing with endemic

disease situations, that is, situations in which the disease

is essentially at equilibrium in the population or at least

changing slowly relative to the life span of the host

individual. Alternatively, if the data record is long

enough, stable cycles about a mean can be accommo-

dated as well (e.g., Farrington et al. 2001). This

assumption is for ease of presentation only, and, as we

briefly consider near the end of the Discussion, our

approach is easily and naturally extended to non-

equilbrium situations.

We start by introducing the notion of cumulative

incidence. Although it would seldom be practical, one

approach to measuring a disease’s foothold in a

population would be to introduce a cohort of negative

sentinel animals into the population and then monitor

them continuously to determine how rapidly they

become positive (McCallum 2000). [For simplicity at

this point, we will assume that any sentinel that dies

before becoming positive would be replaced immediately

with a new negative sentinel to carry on the monitoring

of the original sentinel. The same result would be

achieved by treating pre-conversion deaths as right-

censoring events in an event-time analysis approach

(Kalbfleisch and Prentice 1980), but the replacement

assumption requires less explanation at this point.] For

now, we assume that there is no age dependency with

respect to the susceptibility to infection and that the

population is homogenously mixed with respect to

infectious contacts. If x is the exposure time of the

sentinels in the population and disease conditions

remain relatively stable, the expected proportion of the

initial sentinel population that is still negative at time x

after introduction will have decayed away exponentially

according to exp(�kx), where k is the rate constant

known as the force of infection, or infection hazard. The

expected proportion of the sentinel cohort that is

positive, the cumulative incidence, at time x is p(x) ¼ 1

� exp(�kx) (Fig. 1). The clearest way to think of the

force of infection (k) is that over a short interval of time

from x to x þ D, the probability that a negative animal

becomes positive is kD. (Initially, the cumulative

incidence curve is well approximated with the linear

relationship p(x) ’ kx. A constant fraction of the

remaining susceptible sentinels is constantly being

converted, and the nonlinearity occurs as the pool of

remaining susceptible sentinels gets progressively dimin-

ished; Fig. 1). The defining feature of cumulative

incidence is the (almost always impractical) continuous

longitudinal monitoring of all of the introduced

sentinels.

If all animals are born test-negative, births have the

effect of introducing negative sentinel cohorts into the

natural population. This should immediately point out

the source of age dependency in overall apparent

prevalence. The cross-sectional sample on which appa-

rent prevalence is based can be thought of as a mixture

of sentinel cohort populations with various exposure

times (ages); hence, the apparent prevalence will reflect

this mix of ages. Populations skewed toward younger

age classes, say by high reproduction, will have

experienced less exposure time and, hence, will have a

lower overall apparent prevalence.

Although cumulative incidence is a useful device for

introducing the notion of the force of infection and

illustrating why apparent prevalence shows strong age

dependency, the cumulative incidence relationship p(t)¼
1 � exp(�kt) typically will not be especially useful in

wildlife applications that result in age-specific apparent

FIG. 1. The solid line is the exposure-specific cumulative
incidence p(x) for infection hazard (force of infection) k¼ 0.25.
The dashed lines are the age-specific apparent prevalence mc(t)
for varying values of the infection-associated mortality hazard
increment l (0.1, 0.2, 0.4, and 0.8); smaller l values correspond
to higher mc(t) values. Subscript ‘‘c’’ indicates age-constant
hazards. The asymptotic value of the curve is k/l or 1,
whichever is smaller. Apparent prevalence mc(t) equals the
cumulative incidence p(x) when the disease is benign (l¼ 0).
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prevalence data, where t now indicates the sampled

subject’s age. The reason for this is that the cross-

sectional sampling on which apparent prevalence is

based does not obtain a representative sample of all

animals that were originally introduced into the sentinel

birth cohorts because of the biasing effects of infection-

associated mortality.

Infection-associated mortality is defined as the in-

crease in mortality hazard resulting from becoming test-

positive relative to an animal that remains test-negative.

(It does not imply death due to any particular cause, and

should not be confused with cause-specific mortality.)

Infection-associated mortality has no effect on longi-

tudinally sampled cumulative incidence; a sentinel

animal is followed until it becomes positive, and

whatever happens to the animal thereafter is irrelevant.

In contrast, infection-associated mortality can exert a

huge effect on cross-sectionally sampled apparent

prevalence. Infection-associated mortality preferentially

removes previously converted animals before a cross-

sectional sample is obtained and, hence, the animals

available for sampling will be biased toward negative

animals. Thus, unlike cumulative incidence, a mean-

ingful analysis of apparent prevalence and estimation of

the force of infection must simultaneously accommodate

infection-associated mortality. In general event-time

analysis, an event, such as death, that prevents a subject

from subsequently being recruited into the study is

referred to as left truncation (Cox and Oakes 1984). In

the wildlife and ecological literature, it is not uncommon

for left censoring and left truncation to be confused. In

left censoring, the subject is recruited into the study but

the endpoint, such as infection, has already occurred by

the time of study entry. In left truncation, the previous

occurrence of some endpoint, usually death, prevents us

from even being aware of the subject. Apparent

prevalence data are both left-truncated by death and

left-censored with respect to infection time. The effect of

infection-associated mortality on left truncation sub-

stantially complicates the analysis of apparent preva-

lence data and prevents it from being an otherwise

standard left-censored data problem in which left

truncation can be ignored (e.g., Farrington et al. 2001).

As humans continue to encroach on natural ecosys-

tems, the trend for infectious wildlife diseases to involve

controversial human or domestic livestock aspects will

increasingly require the attention of resource managers

and researchers. Our goal is to acquaint readers with the

central concepts and tools of quantitative epidemiology

of infectious wildlife diseases, in which the force of

infection plays a central role. This paper focuses on

developing and comparing general force-of-infection

models for apparent prevalence data for nonbenign

diseases (i.e., diseases associated with an increase in

death rate) which heretofore have been an essentially

intractable problem. Following the standard approach

in modern medical biostatistics, we formulate the

problem in terms of hazard functions (e.g., Anderson

et al. 1992) from which we then obtain maximum

likelihood solutions. This provides a natural propor-

tional-hazards framework for the regression analysis of

variables of interest, which we describe and compare

with better known logistic regression procedures. The
age-prevalence approach to estimating the force of

infection has been used with substantial success in

human populations for many years (e.g., Anderson and

May 1985, Grenfell and Anderson 1985, Bundy et al.

1987, Keiding 1991, Keiding et al. 1996, Farrington et

al. 2001), including an until recently somewhat over-
looked general treatment by Daniel Bernoulli in 1766

(Dietz and Heesterbeek 2002). Presence–absence data

such as age-prevalance data are generally referred to as

current status data, and the analysis of general current

status data has received a substantial amount of

attention (e.g., Jewell and van der Laan 2004). However,
the vast majority of these analyses assume that any

infection-associated mortality is negligible. There have

been relatively few age-specific prevalence applications

in zoology and wildlife; notable examples include

transmission of nematodes in Red Grouse (Hudson

and Dobson 1997), schistosome infections in snails

(Cohen 1973, Woolhouse and Chandiwana 1992), and
Mycobacterium bovis infection of ferrets (Caley and

Hone 2002). Without exception, when any of these

approaches allow for infection-associated mortality,

only very simplistic force-of-infection models could be

implemented, which we address. The methods are

equally applicable, regardless of the infectious agent:
prion, microorganism, or macroparasite.

LOGISTIC REGRESSION, LINK FUNCTIONS, AND THE

THREE-STATE IRREVERSIBLE DISEASE MODEL

Apparent prevalence is an example of binary data.

Each animal is tested for disease, and the outcome is
that the animal is either positive (Y¼ 1) or negative (Y¼
0). Many ecologists are familiar with logistic regression,

which is a popular method for analyzing binary data

(e.g., Trexler and Travis 1993), and indeed logistic

regression has been the method of choice for analyzing

wildlife apparent prevalence data. Logistic regression is
a specific example of binary regression, where factors of

interest (covariates), say the vector X, are related to the

probability of the event of interest, Pr(Y ¼ 1 jX),
through some function, the link function. (For the sake

of technical correctness, we point out that what we

subsequently will refer to as link functions are actually
inverse link functions in the usual generalized linear

model terminology.) In logistic regression, the link

function is the logistic function:

PrðY ¼ 1jXÞ ¼ expðb0 þ XbÞ
1þ expðb0 þ XbÞ :

In the majority of applications of logistic regression, and

wildlife disease prevalence is such an example, there is

nothing especially natural about the logistic function. It

is just a convenient way to make sure that predicted
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values for Pr(Y¼ 1 jX ) stay within the feasible range of

0–1, and much of its popularity simply reflects the wide

availability of software. The log odds ratio parameters,

b, have no direct dynamic epidemiological interpreta-

tion, and as will be described, the logistic function itself

does not behave as apparent prevalence data are

observed to behave. Our intention is not to criticize

logistic regression, but rather to use it as a familiar

starting point and to introduce the general notion of a

link function, showing why alternatives are desirable.

Our next step is to illustrate how a consideration of the

disease process leads to alternative link functions that

allow us to proceed in a manner quite similar to usual

logistic regression estimation and modeling, with the

important difference that the parameters and models

correspond to specifically defined epidemiological hy-

potheses.

Fig. 2 depicts the three-state irreversible disease model

(e.g., Keiding 1991, Anderson et al. 1992). Wildlife

diseases such as chronic wasting disease, tuberculosis,

brucellosis, and West Nile virus arguably fit this model.

An animal’s probability of being alive and disease-

negative at age t is N(t); of being alive and disease-

positive at age t is P(t); and of being dead at age t is D(t).

It is assumed that animals are born disease-negative.

That is, at age t ¼ 0, a birth cohort appears in the top

compartment (alive and disease-negative) so N(0) ¼ 1,

P(0) ¼ 0, and D(0) ¼ 0. However, some animals may

immediately start to leave this state by becoming

positive and moving to the second state, P, or dying

directly, moving to the third state, D. The age-specific

hazard functions k(t), d(t), and d(t) þ l(t) control the

rates (probabilistically speaking) at which animals make

transitions from one state to another. The force of

infection, or infection hazard, k(t), is just as described

before, except that we now allow for the possibility that

it may vary with age t. The probability per unit time at

which living, negative animals die is controlled by the

infection-negative force of mortality, or mortality

hazard, d(t). The infection-associated mortality hazard

is d(t)þ l(t), and in particular l(t) reflects how infection

increases the mortality hazard above the disease-

negative rate d(t).
Apparent prevalence is obtained from a cross-sec-

tional sample of living animals; that is, samples are

drawn from only the top two compartments, N and P of

Fig. 2. Age-specific apparent prevalence is the proba-

bility that an animal, conditional on being alive at age t,

is disease-positive, and is given as

mðtÞ ¼ PðtÞ
PðtÞ þ NðtÞ

which is the probability of being in the second compart-

ment (P), conditional on being in one of the top two

compartments. This specifies a link function Pr(Y¼ 1 j t)
¼ m(t), which links the probability of the observation Y

to an underlying model formulated in terms of hazard

functions. The hazard functions in Fig. 2 essentially

specify a system of differential equations that can be

solved for the state probabilities P(t), N(t), and, in turn,

m(t) (see Appendix). In particular, if we assume that k(t)
and l(t) do not vary with age, that is, k(t)¼ k and l(t)¼
l, we obtain the link function for age-specific apparent

prevalence as

mcðtÞ ¼
1� exp½�ðk� lÞt�

1� l
k

exp½�ðk� lÞt�
ð1Þ

where the subscript ‘‘c’’ of mc(t) reminds us that the

hazards are age-constant. Eq. 1 gives the age-specific

apparent prevalence, correcting for the potentially

higher mortality rate of positive animals.

This particular model has a remarkable history; with

minor modifications, this model was presented by

Daniel Bernoulli in 1766 (Seal 1977, Dietz and

Heesterbeek 2002). This is a special case of Cohen’s

(1973) model when the disease cure rate (‘‘defection’’) is

0. The behavior of this model for varying values of l is

shown on Fig. 1. When the infection-associated mortal-

ity-hazard increment is greater than the force of

infection (l . k), apparent prevalence mc(t) will never

reach 1, but levels out at k/l. Note that when there is no

infected-associated mortality (l ¼ 0), the apparent

prevalence model and the cumulative incidence model

are equivalent: mc0(t)¼ 1� exp(�kt). It is interesting that

the infection-negative mortality hazard d(t) has no direct

bearing on these models (see Appendix), which follows

from Cohen’s (1972) observation. We now describe how

link functions such as mc(t) can be used for analyzing

apparent prevalence, and how variables of interest can

be modeled in this context.

PROPORTIONAL INFECTION HAZARD MODELS

Because hazard functions are nonnegative functions,

it is natural to model them with log-linear models.

FIG. 2. The three-state irreversible disease model.
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Consider a vector of interesting covariates, say X. Let

h0(t) be the value that the hazard function assumes when

all of the covariates are null (X¼ 0); h0(t) is the baseline

hazard function. A natural way to model the influence of

covariates on a hazard function is then ln h(t)¼ ln h0(t)þ
Xb, or, equivalently, h(t)¼ h0(t)exp(Xb). This is the basis
for the proportional hazards model, popularized by Cox

(1972). The term exp(Xibi) for the ith covariate Xi is

referred to as a hazard ratio and the unit hazard ratio

exp(bi) measures how much a unit change of Xi shifts the

hazard h(t) up [exp(bi) . 1] or down [exp(bi) , 1].

Such models are easy to build into the structure of the

Bernoulli/Cohen apparent prevalence link function mc(t).
Any regression-type model b0 þ b1X1 þ � � � þ bnXn that

would be appealing to examine, say with logistic

regression, is just as readily accommodated by mc(t) by
substituting k ¼ exp(b0 þ b1X1 þ � � � þ bnXn) into mc(t).
The resulting parameter estimates have specific epide-

miological interpretations. The intercept b0 is the log

baseline force of infection, ln k0, and the coefficients, bi,

are the log infection hazard ratios. In general, it is not

appropriate to treat age t as just another covariate Xj.

Note that the link function mc(t) already includes age t; if

we include age t as a covariate Xj in the log-linear model

for k as well, we are essentially saying that our original

assumptions about the age structure of k(t) used when

we solved Fig. 2 for mc(t) need some correction. Such a

model with t entered as a covariate Xj will not

correspond to a known solution of Fig. 2, and hence

should not be given a hazards-based interpretation.

However, such models are very useful diagnostically; if

age t (or some transform) as an ordinary covariate

improves model fit substantially, it indicates that the age

dependency of the baseline infection hazard is incor-

rectly specified. This then requires an exploration of

models for m(t) other than mc(t) if we want to preserve the

hazards interpretation, which is generally a desirable

goal. We consider this next.

EXTENSION TO AGE-VARYING INFECTION HAZARD MODELS

In many circumstances, age invariance of the infection

hazard required for mc(t) is unrealistic. The assumption

that the infection hazard is age invariant results in the

infection times following an exponential distribution.

For general event-time analysis, numerous age-varying

hazard functions have been proposed, and these make a

reasonable starting point for age-varying infection

hazard models. Popular two-parameter age-varying

hazard models include the Weibull k(t) ¼ ab(at)b�1,
the Gompertz k(t)¼ eaþbt, the Pareto k(t)¼ ab/(1þ bt),
and the log-logistic k(t) ¼ ab(at)b�1/[1 þ (at)b], where a
and b are parameters that control the age dependency.

These models arise from various assumptions about the

event process (e.g., Hougaard 2000). The Weibull model,

which contains the exponential model as a special case

(b ¼ 1), models the hazard as a power function of age.

The Gompertz model also includes the exponential as a

special case (b ¼ 0) and assumes that the log hazard is

linear with respect to age. The Pareto model is an

example of a frailty, or heterogeneous hazard, model;

the infection hazard is assumed to be age invariant for

each animal i, ki(t)¼ki, and ki for animal i is assumed to

be the realization of a gamma random variable. Like the

Gompertz and Weibull, the Pareto hazard is monotonic

with respect to age. The log-logistic hazard is unique

among these models in that it is not monotonic and can

have a peak.

Unlike for mc(t), it appears to be impossible to find

closed-form solutions for the age-specific apparent

prevalence m(t) for these hazard models (e.g., Caley

and Hone 2002). However, we have developed a robust

approximation method that allows one to compute m(t)
for any age-varying hazard function. The approach is

based on the piecewise constant hazards (PCH) model

kpc(t), which divides the age axis into intervals 0¼ t(0) ,

t(1), � � � , t(j). During the qth interval from t(q�1) to t(q),

the hazard remains constant at kq, so kpc(t) ¼
Rm

q¼1 kq1ftq�1 , t � t(q)gwhere 1f g is the 0–1 indicator

function (Hougaard 2000). The PCH is popular in

event-time analysis because it is a flexible model that can

approximate many different forms. In the Appendix, we

give the closed-form solution for m(t) for the PCH

infection hazard model for any number of intervals,

mpc(t). In turn, the PCH model mpc(t) can be used to

approximate m(t) for any infection hazard model k(t) by
setting kq ¼ k((t(q�1) þ t(q))/2), the value of k(t) at the

midpoint of the interval. This approach is very robust

and, with an adequate number of intervals, achieves a

high degree of accuracy (Appendix). Proportional-

hazards models are easily incorporated into this frame-

work by modeling kq as kq ¼ k0qexp(Xb), where k0q is

the midpoint hazard k((t(q�1)þ t(q))/2) for the particular

parametric model of interest.

MODEL DIAGNOSIS AND COMPARISON

For model fitting, we take a maximum likelihood

approach, although Bayesian approaches could be used

as well. For models fitted by maximum likelihood, there

are two popular approaches for model comparison:

information theoretic measures and likelihood ratio

tests. If one model can be obtained from a more general

model by imposing restrictions on the more general

model, likelihood ratio statistics can be used to compare

such models (McCullagh and Nelder 1983). Loosely

speaking, the negative log maximum likelihood,�L (see

Appendix) can be viewed as a measure of the distance

between the observed data and the fitted values. Let Lg

and Lr be the log maximum likelihoods for the general

and restricted models, respectively. For nested models it

is always the case that Lg . Lr, even if the general model

contains needless parameters, so the issue becomes

whether the difference Lg� Lr is large enough to suggest

that the general model is a real improvement over the

restricted model. For moderate sample sizes, under the

null hypothesis that the additional parameters in the

general model are unnecessary, the statistic G2¼ 2(Lg�
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Lr) will follow a chi-squared distribution with ‘‘df’’

degrees of freedom, where ‘‘df’’ is the difference in the

number of parameters between the two models. If a

‘‘significant’’ difference is not seen to exist between the

two models, this is taken as evidence that the additional

complexity of the general model is not warranted unless

ancillary information suggests otherwise. Likelihood

ratio tests are appropriate only for nested models, but

information-theoretic approaches can be used to com-

pare nested and nonnested models (Burnham and

Anderson 1998). Akaike’s Information Criteria (AIC)

is defined as AIC¼ 2(�Lþ q), where q is the number of

parameters in a model and essentially penalizes the fit

measured by�L for the complexity of the model. Among

competing models, the model with the smallest AIC is

considered the ‘‘best.’’ The differences between the AICs

for competing models, DAIC, can be used to judge the

relative strengths of support. Models with DAIC , 2

relative to the best model need to be considered as

serious contenders for best model, whereas models with

DAIC . 4 deserve substantially less credibility, and

DAIC . 10 indicates virtually no support (Burnham and

Anderson 1998). However, as we note in our example, it

is important that this approach be applied only to the set

of those models that initially enjoy relatively comparable

scientific support.

In ordinary regression, residuals are an important tool

for diagnosing model adequacy. The extreme discrete-

ness of binary data makes residual analysis problematic

unless data can be grouped, which is indeed often

feasible in wildlife apparent prevalence data. A ‘‘group’’

is composed of all animals that have the same age and

covariate profile, such as sex and location. If nk is the

total number of subjects in group k, and yk is the

number that are positive, then the deviance residual

(McCullagh and Nelder 1983) for group k is defined as

follows:

dk ¼ signðyk � ŷkÞ

2yklog
yk

ŷk

� �
þ 2ðnk � ykÞlog

nk � yk

nk � ŷk

� �� �1=2

:

Plotting dk against age t or against covariates in X is

useful for assessing ill-fitting model components, which

we illustrate in our example. Deviance residuals

essentially decompose the log likelihood L, and viewing

the log likelihood as an overall-fit distance measure, the

deviance residuals represent the individual group con-

tributions to the fit.

For models such as we present, the distributions of the

maximum likelihood estimates (MLEs) of the para-

meters will converge to normal distributions as the

sample size grows. Thus, for example, approximate 95%
confidence intervals can be constructed in the usual way

about any parameter estimate as ĥ 6 1.96 SE (ĥ).
However, if the distribution of ĥ is skewed, as might be

expected for parameters restricted to be nonnegative,

such as l, convergence to normality may be slow. This

can be improved by applying monotonic transforma-

tions thought to make the distribution more symmetric,

such as ln(ĥ) (e.g., Therneau and Grambsch 2000). A

profile likelihood approach to confidence intervals,

which is usually more exact and invariant to monotonic

parameter transformation, is preferable (e.g., Therneau

and Grambsch 2000). This approach is based on the

likelihood ratio statistic G2 ¼ 2(Lg � Lr), where the

general model treats h as a free parameter to be estimated

and as a known constant in the restricted model. Then

the 95% profile likelihood confidence set for h are all of

those values of h for which 3.84 . 2(Lg � Lr); we

illustrate this approach in the example.

EXAMPLE

Joly and Messier (2004) examined factors affecting the

apparent prevalence of bovine tuberculosis (Mycobacte-

rium bovis, BTB) in bison (Bison bison) in Wood Buffalo

National Park, Canada; we use a subset of their data for

illustration. We pool the Delta and Hay Camp bison

and exclude the Nyarling River animals because no

males were tested there. Our subset includes a total of

322 animals, of which 156 tested positive for TB (see

Joly and Messier [2004] for details on capture and

testing methods and diagnostic test criteria). The oldest

animal was over 20 years old, and to generate

reasonably smooth apparent prevalence plots, we bin

some ages (Fig. 3).

The three primary questions of interest are (1) is the

force of infection dependent on age, (2) is the force of

infection sex specific, and (3) is there evidence for

infection-associated mortality? For every ‘‘baseline’’

force-of-infection model, we fit four model structures.

The ‘‘null’’ model assumes that there is no infection-

associated mortality (l ¼ 0), and furthermore assumes

that there is no sex effect. The ‘‘sex’’ model assumes that

there is no infection-associated mortality (l ¼ 0), but

that sex acts in a proportional hazards fashion on the

FIG. 3. Age-specific apparent prevalence by sex in bison
(Bison bison). Bins were created for ages 3–5, 6–10, and 11 years
and greater. The average age within the bin was used as the
plotting point on the x-axis.
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infection hazard. The ‘‘l’’ model assumes that there is

infection-associated mortality, but no sex effect. The
‘‘sex, l’’ model assumes that there is both infection-

associated mortality and a sex effect on the infection

hazard. As shown in Table 1, we fit eight baseline force-

of-infection models; as will be discussed, some of these

are ‘‘diagnostic’’ models and some are ‘‘scientific’’ or
‘‘hypothesis’’ models. Model comparisons are performed

with likelihood ratio tests and the DAIC statistic.

Models assuming an age-constant infection hazard,

mc(t), are especially tractable because they have closed-

form likelihoods (Eq. 1) and so can be fittedwith standard

generalized nonlinear modeling software, such as SAS
PROC NLMIXED (SAS Institute, Cary, North Caro-

lina, USA). The deviance residuals for the age-constant

(model 1) ‘‘l, sex’’ model suggests a quadratic lack of fit

with respect to age (Fig. 4). To further explore this, we fit

mc(t) models of the form ln k¼ b0þ b1t (model 2; linear

age) and ln k¼b0þb1t
2 (model 3; quadratic age).We used

the best-fitting hazard-based model as the reference

model for computing the DAICs, which is the log-logistic

‘‘l, sex’’ model for which DAIC becomes 0. The DAICs

allow us to rank all 32 models, and in this respect the

quadratic models (model 3) fit somewhat better than the

best hazard-based model, log-logistic ‘‘l, sex.’’ The good
fit of models such as 2 or 3 present a dilemma; as noted

previously, including age as a covariate causes the model

to lose a hazards-based interpretation. Although models

such as 2 and 3 are useful ‘‘curve-fitting’’ models in much

the same spirit as logistic regression, they no longer

represent known solutions to the three-state disease

model. Depending on the goals, such as evaluating the

relative importance of covariates, analyses based on

models such as 2 or 3 might be adequate. However,

developing an age-varying infection hazard model that

preserves the proportional hazards interpretation will

generally be desirable. Similar to models 2 and 3, model 4

is also a diagnostic model that was intended to examine

whether prevalence patterns differed between the sam-

pling years, e.g., due to sampling issues. The model fits

give no evidence for between-year variation.

In general, proportional infection hazard models with

age-varying infection hazards will not have closed-form

likelihoods; to fit such models, we wrote an R function

(R Development Core Team 2005) given in the Supple-

ment, based on our piecewise constant hazard (PCH)

approximation method (Appendix). The DAICs allow us

to rank all 32 models. In general, no members of the

Weibull (model 5), Pareto (model 6), or Gompertz

(model 7) families of models result in especially good

fits, but the log-logistic models (8) including l fit nearly

as well as the quadratic diagnostic models (3). The

residuals from the log-logistic l,sex model indicate an

TABLE 1. Summary of model fits as measured by incremental AIC and likelihood ratio tests.

Model no. Infection hazard

DAIC

Null Sex l Sex, l

1 constant 36.7 32.7 7.8 7.5 (0.133, ,0.001)
2 ‘‘constant,’’ linear age 2.8 3.3 4.7 5.2 (0.216, 0.754)
3 ‘‘constant,’’ quadratic age �2.0 �1.8 �1.7 �1.2 (0.199, 0.204)
4 constant, year specific 40.5 36.5 11.2 11.1 (0.149, ,0.001)
5 Weibull 14.6 15.1 9.8 9.5 (0.134, 0.006)
6 Pareto 10.1 10.2 6.5 6.6 (0.169, 0.018)
7 Gompertz 5.9 6.2 5.0 5.2 (0.187, 0.088)
8 log-logistic 11.7 10.9 0.7 0.0 (0.099, ,0.001)

Notes: Four model structures were fitted for each infection hazard function assumption: ‘‘null’’ models assume that the infection
hazard is not sex specific, and that conversion does not influence mortality (i.e., l ¼ 0); ‘‘sex’’ models assume that the infection
hazard is sex specific, but that conversion does not influence mortality (l¼ 0); ‘‘l’’ models assume that the infection hazard is not
sex specific, but that conversion does influence mortality; ‘‘sex, l’’ models assume that the infection hazard is sex specific and that
conversion does influence mortality. The log-logistic ‘‘sex, l’’ model was the model to which all other 31 models were compared to
obtain the DAIC values; its AIC was 389.97. The DAIC values are useful for ranking all 32 models: the smaller the DAIC value, the
better the model. Within an infection hazard model, the parenthetical values in the ‘‘sex, l’’ column are the P values resulting from
likelihood ratio tests measuring whether sex improves a model already adjusted for l, and whether l improves a model already
adjusted for sex, respectively. For example, adding sex to the log-logistic model that already includes l results in a P value of 0.099
for sex. Models 2, 3, and, to some extent, 4 are diagnostic models and do not correspond to known hazards-based models; l lacks a
hazard interpretation. All of these models were fitted with the R function in the Supplement; models 1–4 were also fitted with SAS
PROC NLMIXED and obtained very similar results.

FIG. 4. Deviance residuals resulting from the proportional
infection hazards Bernoulli/Cohen model mc(t) with a sex effect.
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improved fit (not shown), no doubt because of the

modal nature of the log-logistic hazard function (Fig. 5).

Within an infection hazard model family, likelihood

ratio tests are useful for judging the relative contributions

of l or sex. From Table 1 it can be seen that including l
(infection-associated mortality hazard) in the valid

hazard models generally improves the fit within a model

family, and this is the case, in particular, for the log-

logistic model (likelihood ratio P , 0.001). The perhaps

most useful interpretation of l is when it is transformed

as exp(�l), which gives the annual survival ratio for a

positive animal relative to a negative animal. That is, for

a subject alive and negative at r, its probability of

surviving from r to rþ1, given that it remains negative, is

Sd(r, rþ 1). Similarly, the survival to rþ 1 for a subject

alive and positive at r can be shown to be exp(�l)Sd(r, rþ
1) (see Appendix); hence, the interpretation of exp(�l) as
the annual survival ratio. Care must be taken not to

overinterpret l, and, in this respect, it is useful to

consider it within the context of competing risk theory

(Kalbfleisch and Prentice 1980). The mortality hazard

function for a negative animal is d(t) and the mortality

hazard rate for a positive animal is d(t)þ l. The hazard
increment l represents the disease-associated mortality

hazard in the context where all other sources of mortality

are operating as well. It is usually untenable to conjecture

that l is independent of the general mortality hazard

background; for example, predators may preferentially

take positive animals, so reducing general predation

intensity might have the effect of reducing l as well.

Although it may seem unsatisfying, generalizing l to

situations beyond those in which it was measured is

conjectural. This is analogous to the problem of ‘‘risk

removal’’ in the analysis of cause-specific mortality

(Kalbfleisch and Prentice 1980, Heisey and Fuller 1985).

Fig. 6 shows the profile likelihood for the annual

survival ratio exp(�l) for the log-logistic model. The

maximum likelihood estimate of exp(�l) is 0.77, with a

95% profile likelihood confidence interval of 0.67–0.89.

The estimate of exp(�l) is rather sensitive to the

proposed infection hazard model under which it is

estimated. For the valid infection hazard models (1, 5, 6,

7, 8), estimates of exp(�l) range from 0.64 to 0.86. The

model-averaged estimate of exp(�l) is 0.77 when

averaged over all valid infection hazard models that

included l (Buckland et al. 1997).

Although the evidence for age dependence of the

infection hazard seems clear, the evidence for sex

specificity is equivocal (likelihood ratio P ¼ 0.099).

None of the model fits improved dramatically when a

sex term was included (Table 1), although it did not

seem to detract from the models either. In the log-

logistic model, the infection hazards ratio for females

relative to males was estimated to be 0.77, the effect of

which is displayed on Fig. 5. The 95% profile likelihood

confidence interval ranges from 0.57 to 1.05, including

the null value of 1, consistent with the P value of 0.099.

DISCUSSION

Statistical model evaluation and selection must

achieve a balance between prior belief or knowledge

and strength of evidence conveyed by data. Clearly,

models based on substantive underlying theory, with

parameters interpretable within that theory, are pref-

erable to atheoretical ‘‘curve-fitting’’ models that fit

equally well. Indeed, theory-based models are to be

preferred over curve-fitting models even if the curve-

fitting models fit somewhat better. A substantially better

fit by a curve-fitting model should direct the researcher

to reconsider the specific structure of the theory-based

FIG. 5. Estimated force of infection (infection hazard) for
the log-logistic model.

FIG. 6. Profile likelihood for the estimate of the infection-
associated annual survival ratio exp(�l). The partial likelihood
was obtained by fixing l [plotted on the x-axis as exp(�l)] in the
‘‘l, sex’’ log-logistic model 8 and then maximizing the
likelihood for all of the remaining parameters. The y-axis is 2
3 log(partial likelihood). The horizontal line is 3.84 units below
the maximum likelihood and forms the cutoffs for a 95% CI.
The best estimate (maximum likelihood) is 0.77, with a 95% CI

of 0.67–0.89.
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model, but seldom should the researcher prefer the

curve-fitting model as a better representation of nature.

In this respect, not all models are a priori equal, and

model selection procedures such as Burnham and

Anderson’s (1998) AIC-based approach must be applied

with enough flexibility to take this into account. Thus,

although our ‘‘constant infection hazard, quadratic

time’’ models produced the best fits from an AIC

standpoint, we do not seriously entertain these as the

‘‘best,’’ or even especially interesting, scientific models

because they do not correspond with (known) solutions

to the three-state model. (Of course our thinking on this

might change if it were discovered that they were

solutions under reasonable conditions.)

Caley and Hone (2002) show that simple piecewise

force-of-infection models could be quite useful, but with

their approach, they noted that obtaining solutions for

even three-piece models involves ‘‘considerable compli-

cations.’’ Our approach allows the easy fitting of

piecewise models with any number of pieces, but we

would generally recommend piecewise models only for

identifying the general shape of other parametric

models. AIC model selection for general piecewise

models is problematic: of course each ‘‘piece’’ contrib-

utes a parameter for k(t), but if knot positions can be

manipulated, as they usually can, they, too, should be

viewed as parameters, thus complicating dimensionality

considerations. A theoretically preferable approach

might be to specify a piecewise model with many pieces

and then impose a roughness penalty and use an

information theoretical approach to measure the ap-

proximate dimensionality and select the appropriate

degree of smoothing (e.g., Eilers and Marx 1996).

To our knowledge, this is the first application that

demonstrates how the Bernoulli/Cohen model mc(t) and
its extensions based on solutions of Fig. 1 can be used for

proportional-hazards modeling of the force of infection.

As noted, a special case of mc(t) occurs when the disease

is assumed to be benign. This results in the model mc0(t)¼
1� exp(�kt), which has had a long history in modeling

human disease prevalence data (e.g., Muench 1959,

Draper et al. 1972, Griffiths 1974); Muench referred to it

as the catalytic model. Today, this model is referred to as

the interval-censored proportional-hazards model (Pren-

tice and Gloeckler 1978) or the complementary log–log

link model in generalized linear models. Such models are

easily fitted with most logistic regression or generalized

linear model packages (Allison 1997).

For the bison data, we have demonstrated strong

support for the infection hazard of BTB being age

dependent. At least two very different mechanisms can

give rise to such patterns. Under a ‘‘homogeneous

population’’ model, all animals have the same age-

specific infection hazard patterns, which arise from age-

specific physiological or behavioral mechanisms com-

mon to all animals. Under a ‘‘heterogeneous popula-

tion,’’ or frailty, model, each animal has a different

infection hazard function. The event of interest occurs

on average in the ‘‘most frail’’ high-hazard subjects first,

with the result that the average hazard for the

population eventually drops as the high-hazard individ-

uals are eliminated. Thus, the force-of-infection pattern

observed for bison may reflect one or some combination

of these two mechanisms. An interesting result of this

analysis is the demonstration of reduced survival in

tuberculosis-positive bison. Joly and Messier (2005)

were unable to demonstrate a main effect of disease on

survival based on radiotelemetry data collected over a

three-year period. The use of age-specific apparent

prevalence data such as this may provide a more

powerful test of the association of disease with survival

rates in wildlife populations than can be obtained

through radiotelemetry.

We have focused on the situation in which the infection

hazard may depend on age, but not independently on

calendar time. However, in epidemic rather than endemic

situations, the role of calendar time may become very

important in addition to age. Generalizing our approach

to both calendar time and age presents no particular

theoretical challenges (Keiding 1991), although estima-

tion in the presence of both considerations will be more

demanding data-wise. Let b be the calendar time of birth.

Many models could be proposed for k(t, b þ t), the

bivariate age and calendar time-dependent infection

hazard. A reasonable starting point is a separable model

of the form k(t, bþ t)¼ f(bþ t)h(t) where f(bþ t) is some

nonnegative function of calendar time and h(t) is any age-

dependent hazard function such as previous considered.

With a minor change in notation, the derivation in the

Appendix holds (Keiding 1991), and such models are

very easily dealt with within our PCH approximation

framework. However, unless data have been collected

over some extended period of time, bþ t and t could be

highly confounded, making it difficult or impossible to

untangle age dependencies from calendar time depend-

encies. Joint calendar time/age modeling is thus most

applicable to long-term, or panel (Jewel and van der

Laan 2004), data sets. There are numerous circumstances

in which wildlife disease data sets are georeferenced, and

a natural direction for future research is to extend models

such as we present here from the temporal domain to the

spatiotemporal domain (Lawson 2001).

As the well-known statistician George Box is credited

with saying, ‘‘All models are wrong, but some are

useful.’’ It should be recognized that our approach rests

on several assumptions. A basic biological assumption is

that the disease test is relatively good, i.e., the test has

relatively good specificity and sensitivity through time,

and that the notion of a conversion time is a meaningful

idea for the particular disease and the particular test.

Although the age-specific prevalence pattern suggests

that the infection hazard is modal, other explanations

for this pattern exist. Perhaps previously infected

animals become less likely to test positive as they age;

in bovids, individuals may become less likely to test

positive as BTB progresses (Joly and Messier 2004).
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Alternatively, the disease-associated mortality may be
age specific, wherein the disease is more lethal in older

animals. These issues are very difficult to untangle from
just apparent prevalence data. In this respect, such
analyses are valuable for guiding what questions should

be examined in future studies and experiments.
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APPENDIX

State probability solutions for the three-state irreversible disease model (Ecological Archives E087-143-A1).

SUPPLEMENT

R function for fitting age-varying force-of-infection models to disease prevalence data (Ecological Archives E087-143-S1).
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