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Abstract

Estimating cause-specific mortality is often of central importance for understanding the dynamics of wildlife populations. Despite
such importance, methodology for estimating and analyzing cause-specific mortality has received little attention in wildlife ecology
during the past 20 years. The issue of analyzing cause-specific, mutually exclusive events in time is not unique to wildlife. In fact,
this general problem has received substantial attention in human biomedical applications within the context of biostatistical survival
analysis. Here, we consider cause-specific mortality from a modern biostatistical perspective. This requires carefully defining what
we mean by cause-specific mortality and then providing an appropriate hazard-based representation as a competing risks
problem. This leads to the general solution of cause-specific mortality as the cumulative incidence function (CIF). We describe the
appropriate generalization of the fully nonparametric staggered-entry Kaplan-Meier survival estimator to cause-specific mortality
via the nonparametric CIF estimator (NPCIFE), which in many situations offers an attractive alternative to the Heisey—Fuller
estimator. An advantage of the NPCIFE is that it lends itself readily to risk factors analysis with standard software for Cox
proportional hazards model. The competing risks—based approach also clarifies issues regarding another intuitive but erroneous
“cause-specific mortality” estimator based on the Kaplan-Meier survival estimator and commonly seen in the life sciences

literature. (JOURNAL OF WILDLIFE MANAGEMENT 70(6):1544-1555; 2006)
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During the past 20 years, there has been much elaboration
of methods available for estimation of survival rates and
distributions for wildlife populations (Winterstein et al.
2001, DelGiudice et al. 2002, Williams et al. 2002). This
has arisen largely by adaptation of methods used in human
biomedical applications, mark-recapture estimation of
animal densities, or industrial failure-time estimation.
Relative to recent advances in survival analysis, researchers
have directed less attention to the estimation and compar-
ison of cause-specific mortality (CSM) rates, despite the
importance of this information for improvement in our
understanding of the dynamics of wildlife populations. The
issue of analyzing cause-specific, mutually exclusive events
has received substantial attention in human biomedical
applications within the context of biostatistical survival
analysis. Here, we attempt to update analyses of cause-
specific mortality in wildlife research from a modern
biostatistical perspective.

Mortality and survival rates are actually probabilities, and
probabilities are associated with random variables. For
mortality and survival probabilities, the random variable is
survival time (7). The mortality probability at time # M(#),
is the probability that the survival time 7" will be less than
some specified time # which is usually represented as M(#) =
Pr(T" < #). Survival probability is the complement of
mortality probability, that is §(z) =1 — M(#) = Pr(T > #).
Cause-specific mortality introduces a second random

variable, K, which is the type (cause) of death. Thus,
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cause-specific mortality involves the bivariate pair of random
variables 7" and K. Cause-specific mortality is the joint
probability that death occurs before #, 7' < #, and that it is of
type K = %. We represent this symbolically as My(#) = Pr(T
< t, K= k). Because the causes, %, are mutually exclusive
events (assume there are Q different causes), an important
and natural property of this definition of cause-specific
mortality is that the cause-specific mortality probabilities
sum to the total mortality probability:

Y
M(1) = Mq(2)
=1

We will refer to this property as “conservation of
mortality.” All reasonable estimators of cause-specific
mortality should obey this property, and one should be
skeptical of estimators that exhibit substantial violations.

If researchers mark a sample of animals simultaneously at
the start of a period of interest, calculation of () and M,(%)
as simple proportions (e.g., binomial estimator, see Murray
2006) is appropriate provided no subjects are lost to follow-
up (i.e., censored), except due to a known death. However, if
researchers progressively enter animals into the at-risk group
as a study progresses (i.e., staggered entry sensu Pollock et
al. 1989, more commonly known in biostatistics as left-
truncation) then 2 serious biases may arise (Heisey and

Fuller 1985):

1. When researchers periodically add animals to the risk set
as a study progresses, unmarked animals that die early
during the sampling interval are not available for addition
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to the risk set later in the sampling interval. If not properly
accounted for, pooling of animals added part way through
the study with animals included in the risk set since the
beginning of the study biases upwards estimated survival
rates for the entire study period, and hence underestimates
the magnitude of specific mortality agents.

2. If survival probability varies seasonally, then seasons
having the largest sample sizes will be most influential in
determining overall survival rates. This occurs because
using a simple binomial estimator of survivor, researchers
calculate annual mortality by dividing the number of
deaths observed during the entire year by the number of
marked animals “at risk” during the year, regardless of
the season or period of the year during which they were
actually part of the risk set. For sake of example, assume
there are no seasonal differences in survival probability
but that sample sizes are highest in winter following
capture of new study animals. Overall, most mortalities
documented during the study will occur in winter (simply
because of higher sample sizes in winter) and because
data from animals sampled throughout the year are
pooled and considered equal with a simple proportion
estimator, winter will be most influential in determining
annual survival rates.

As noted, these simple proportion estimators also assume
that no marked animals drop out during the period of
interest (i.e., no right censoring). Prior to Heisey and Fuller
(1985), researchers often expressed cause-specific mortality
rates as simple proportions or percentages and thus were
subject to the biases discussed above.

Heisey and Fuller (HF; 1985) developed an estimator of
M, (#) based on Trent and Rongstad’s (1974) life table-like
approach to estimating M(#). Trent and Rongstad’s
approach is equivalent to assuming a piecewise constant
hazard function, which is a popular approach in mainstream
biostatistical survival analysis referred to as semiparametric
(Laird and Oliver 1980) or loosely parametric (Cai and
Betensky 2003). The primary criticism of this approach is
the arbitrariness of interval construction. For wildlife
applications, Pollock et al. (1989) popularized a fully
nonparametric estimator of M(#) (i.e., makes no assumptions
about the shape of the underlying distribution), known in
biostatistical survival analysis as the generalized Kaplan—
Meier (1958; GKME) or Lynden-Bell (1971) estimator.
Although it has seen little application in wildlife ecology,
the Breslow nonparametric survival estimator is often an
attractive alternative to GKIME (Therneau and Grambsch
2000). Nonetheless, we focus here primarily on the GKME.
In certain situations, fully parametric models of M(#), such
as the Weibull or Gompertz, correctly formulated to
account for left-truncation (e.g., Cox and Oakes 1984),
may also be useful (see Murray 2006). For any valid
estimator of M(¢), it is worthwhile to consider how to
extend it to become a valid estimator of cause-specific
mortality M,(#). Because of their assumption-free nature,
generalizations of fully nonparameteric estimators of M(#)

such as the GKME and Breslow estimator are especially
interesting.

We focus here on the fully nonparametric estimator of
M,(#) that arises from the GKME and has an appealingly
simple form that obeys the conservation of mortality
property. We refer to this estimator specifically as the
nonparametric cumulative incidence function estimator
(NPCIFE) but we recognize that the Breslow or other
survival estimators could be the basis for equally valid
nonparametric CIF estimators. As we discuss in more detail
below, the NPCIFE is not equivalent to the “common-
sense” approach of estimating cause-specific mortality by
treating all deaths except those due to cause £ as censored
events. This latter approach is particularly common in the
human epidemiological field, referred to as the “comple-
ment of the Kaplan-Meier method” (1-KM) by Pepe and
Mori (1993) and Gooley et al. (1999), and later coined “the
KM ignore method (KM-I)” by Tai et al. (2001). The 1-
KM approach has also appeared in the wildlife literature, for
example, Kurzejeski et al. (1987) erroneously used this
estimator to determine “cause-specific mortality” in wild
turkeys. The 1-KM approach estimates the probability of an
event of type £ by time 7, in the absence of competing risks
and thus tends to overestimate the magnitude of specific
mortality causes when multiple sources of mortality (com-
peting risks) are present (Gaynor et al. 1993, Gooley et al.
1999, Tai et al. 2001). We show why the NPCIFE, and not
1-KM, is the appropriate generalization of the GKME for
estimating My(#). For overall mortality or survival, Cox
proportional hazards model (Cox 1972) has become popular
for examining the influence of various covariates or risk
factors. We will demonstrate how to easily obtain the
NPCIFE as an extension of Cox-type analyses for cause-
specific mortality.

In considering the NPCIFE and HF approaches, one
encounters an apparent paradox. Heisey and Fuller (1985),
arguing on the basis of parsimony, suggest that researchers
should choose intervals judiciously and combine apparently
similar intervals. Researchers sometimes criticize the HF
approach because arbitrary interval selection can lead to
potentially biased survival or mortality rate estimates (e.g.,
Tsaietal. 1999). To avoid this in HF, the analyst could allow
the maximum possible number of intervals (e.g., every day is
a new interval), at which point the HF estimator becomes the
NPCIFE. However, doing this contradicts the importance of
parsimony argued for by Heisey and Fuller (1985).

This apparent paradox is resolved by carefully considering
what constitutes a good estimator. A good estimator is one
that in any particular application is likely to be close to the
truth. A common misconception in wildlife statistics and
elsewhere is that bias alone is a useful measure of likely
closeness to the truth. In the text Statistical Theory,
Lindgren (1976:255) reflects modern statistical thinking

on this issue when he states:

“...the everyday connotation of the words ‘bias’ and
‘unbiased’ have led to a common belief—even convic-
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tion—that an estimator should be unbiased to be any

good. There is clearly no basis for this belief as a general

rule.”

In modern biostatistics, the standard measure for likely
closeness to the truth is the mean squared error (MSE),
which reflects the compromise between variance and bias.
We briefly consider how MSE considerations, and neither
bias nor variance alone, should determine the choice of
cause-specific mortality estimator. We also discuss future
directions of cause-specific mortality, specifically proce-
dures that avoid the variance and identifiability issues of
strictly nonparametric approaches applied to left-truncated
data (Tsai et al. 1987) and the arbitrariness of piecewise
models.

Cumulative Incidence Functions

Death can occur at essentially any instant in time, so it is
appropriate to treat the time at death 7" as a continuous
random variable. This forms the foundation of modern
biostatistical survival analysis. The use of discrete-time
approximations are popular in wildlife survival analyses, but
a continuous time approach to cause-specific mortality is
unavoidable to present a sufficient characterization of the
issues that need to be addressed.

We must assume that researchers monitor the subject
animals frequently enough that they can estimate time of
death 7" with negligible error. If this assumption cannot be
met, researchers must employ methods for interval-censored
or grouped data (e.g., Heisey et al. 2006). The treatment of
cause-specific mortality in this context is quite complex and
beyond the scope of this paper.

A key concept is the notion of a continuous time hazard
function, or force-of-mortality. The hazard function, A(2), is
arguably the most important quantity in modern survival
analysis and gives the instantaneous probability per unit
time for death (failure) to occur. Suppose we are interested
in the probability of death due to cause 4 over some very
short time interval, Az Symbolically, this is written as Pr(z
< T <t+At, K=kT > ) = myt+ A#|#), which means,
conditional on being alive at time # (“|7"> #”), death occurs
in the time interval #to £+ Az (“£ < T'< £+ Af’), and that
the death is due to cause 4. To model this, we define the
cause-specific hazard rate function 4(#) which behaves such
that

my(t + At]t) =~ hi (1) At (1)

That is, over very short intervals of time, researchers can
model mortality as acting in a very simple linear fashion.
Because the interval is assumed to be so short that the
probability of two events occurring is essentially zero, we can
represent the probability of dying due to any cause as the
sum of the hazards m(¢4 A#|2) = [h()+. ..+ ho(H)]Az. The
function A(#) is the cause-specific hazard function, formally
defined as the limit of Eq. 1 as As—0. By working with
processes that are occurring at an instant in time, one can
work with simple additive or multiplicative relationships
instead of the complicated exponential expressions involved

in finite survival probabilities. This is why hazard functions
form the basis for most survival analysis modeling.

Suppose we divide time into fine intervals with bounda-
ries at (= 0) < # < £, < ... < #3. The multiplicative
nature of survival across time intervals is familiar from life
table applications (e.g., Banfield 1955, Caughley 1966).
The interval mortalities m(#  1|#) can be easily combined
using the multiplicative relationship to obtain the overall
survival:

S@) = [0 = m(uli)) =T [11 = h(t) (10 — )] (2)
i=0 i=0

We can divide these intervals in increasingly more and finer
intervals, eventually reaching the limit, which we represent as

S(t) =TTt = m(tna|6)] = T [0 = A(e) (1 = )] (3)
a Volterra product-integral (Gill and Johansen 1990). Just as
the usual Riemann integral is the limit of a series of sums, the
Volterra product-integral is the limit of a series of products
(Anderson et al. 1993). The solution to this integral shows the
relationship of the hazard function A(#) to the survival
function S(#):

S(1) = exp {— /0 th(u)du] )

Because of the additivity of cause-specific hazards, we can
express this in terms of the cause-specific hazards as

S(t) = exp {—/Ot{hl(u) + ..+ hQ(u)}du] (5)

If we define

Si(0) = exp | [ ()] (©)

we can then write overall survival as

0
NOES 0 (7)
k=1

S,(#) will become important later in the discussion. It is
important to understand that Si(#) does not have an
interpretation as a observable, realizable quantity but is
simply a useful way to algebraically decompose S(#). Recall
that 4,(#) is the mortality hazard due to cause 4, with all Q— 1
other causes of mortality present and operating. We can view
Su(#) as the survival expected if we removed all sources of
mortality except £, under the assumption that the removal of
all other sources of mortality would not influence the hazard
bi(H). This assumption is both unverifiable and seldom
realistic. While it might be tempting to define My(*=1—
Su(#) as cause-specific mortality, M(#)* does not obey the
conservation of mortality property and generally does not have
a meaningful mortality probability interpretation, a point we
will return to.

We need to relate M,(£f) = Pr(T < ¢, K= %) to the cause-
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specific hazard functions 44(#). Previously, we introduced the
cause-specific (conditional) interval mortality as Pr(z < T'<
t+ At, K=k|T > #) = my(¢ + A#|9), which we approximated
as Pr(¢ < T < t+ At, K= k|T > £) =~ hy()At. This is the
probability of dying in the interval, conditional on starting
the interval alive. To progress, we need the unconditional
interval mortality, which is the probability of dying in the
interval assuming only that the subject was alive at birth (7°
> 0). Using well-known rules of conditional probability, we
can write the unconditional cause-specific interval mortality
as Pr(¢ < T< ¢4+ At, K=#|T > 0) =~ hy() §(£) Az. The term
bu(?) S(#) can be recognized as the probability density
function (pdf) corresponding to the cumulative distribution

function (cdf) My(¥) = Pr(T < ¢, K= k). Thus, we have

M (1) = /Othk(u)S(u)du (8)

This relationship, and not Eq. 6, is the basis for meaningful
estimators of cause-specific mortality. In biostatistical
survival analysis, researchers call this relationship the
cumulative incidence function (CIF; Kalbfleisch and
Prentice 2002). Let f(#) be the pdf corresponding to the
survival function $(#). An important general relationship in
survival analysis that links the hazard function, the survival
function, and the pdf is A(£) = f(2)/8(2), or 8(£) = f(£)/h(5).
This allows us to rewrite the CIF as

My(#) = / () () 9)

where 74(#) is the relative cause-specific hazard defined as
bi(H/h(H). While Eq. 8 is the form of the CIF most
commonly seen in the biostatistical literature, Eq. 9 allows
for intuitive insight into the construction of estimators.

Estimators

Before considering cause-specific mortality, we will consider
overall mortality. Analogous to Eq. 7, for overall mortality
the relationship is

M(1) = /0 Flu)du (10)

That is, a cdf is obtained by integrating (summing up) the
pdf. For now, we will take a strictly nonparametric approach
and will not make any assumptions about the functional
nature of the hazard function A(#). Recall that f(#) is the pdf
of the mortality function M(#). Let £,: 0 < 4 < £, < ... <
tp represent the unique times at which we observed deaths.
Intuitively, it seems reasonable not to allow any probability
density except at those times #; when we observe deaths.
Because integrals such as Eq. 10 are essentially sums, an
estimator of M(#) then becomes a sum describing a step-
function:

M) =Y flw) (11)
i=1

Loosely speaking, (7) is the probability of surviving from

birth until # and then dying, or /() = S(z7) A(Hdr. S(¢7)
means the survival up to a point immediately before time #
As an estimator of A(#), it is reasonable to propose
h(t) = d(t)/n(t), where d(#) is the number of deaths at
instant #, and 7(#) is the number of study animals at risk at
the same instant. Thus, for 0<r<n, M (£) = 0. After #
and before 7z, M(¢)=f(¢t/) =d(t))/n(t;) [because
S'(tl_) =1- M(z‘l_) = 1]. Carrying this a step further for
t, < t < t3 we have

A A A

M(t) = f(t1) + flta) =

because

()= 1 -0

~n(n)

We can apply this process repeatedly for any time # This
procedure is simply tAhe usual GKME given in terms of
mortality. The term f{(#;) is the height of the step of the
GKME at the ith distinct time of death. Each term f{#;) is
essentially a parameter, and because the number of such
parameters grows as the sample size grows, we refer to such
nonparametric approaches as infinite dimensional models,
although counterintuitive, nonparametric estimation ac-
tually requires estimating the maximum possible number
of parameters. As we will discuss, this is less than ideal.
From the GKME, it is now easy to obtain the NPCIFE of
cause-specific mortality, based on Eq. 9. In an obvious

manner, the NPCIFE becomes

W) = 3 Rt (13)

The step-size term f(t,-) is the same as for the GKME. The
obvious estimator for the relative cause-specific hazard is
Fr(t) = di(£)/d(¢), where as before d(7) are all deaths at
instant #, and di(#) are deaths specifically due to cause %.
Unless there are tied death times, 7 (#) is just a 0/1 indicator
function that indicates whether a particular step in the
GKME curve should be credited to cause 4. In the case of
ties, we prorate the step height to the observed causes at
time # Clearly, this approach has the conservation of
mortality property with respect to the overall GKME
estimator of mortality. Although we presented the NPCIFE
based on the KME, the Breslow survival estimator could
also be the basis of a NPCIFE and we are aware of no basis
for preferring one to the other. Andersen et al. (1993) and
Marubini and Valsecchi (2004) describe the rather involved
(sAee Appendix) computation of confidence intervals for
Mk(l).

We refer to the number of study animals under
observation at time # n(#), as the risk set. In most
biomedical applications where staggered entry is not
involved, the risk set is largest at time # = 0, and declines
monotonically with # Thus in the usual biomedical
application of the KME, M(#) is typically well estimated
for small # but small risk sets at larger 7 can result in
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unacceptably high variances in the right tail of M(#). Here
we see that things are not quite so simple for staggered entry
designs and the GKME. Typically, risk sets for early times
may be small or even zero. The GKME becomes undefined
if the risk set ever drops to zero. If only a few animals are
entered early in the study, deaths occurring early in the study
when the risk sets 7(#;) are small will result in high variances
for early steps f(#;). Because of the additive structure of
M(1) and M;(1), the variances will only continue to
increase, even if we eventually achieve large risk sets
(Pollock et al. 1989).

In such cases, it might be tempting to redefine the origin
to some time #* and ignore animals in the study before time
t*. The obvious problem with this approach is that it
achieves no survival estimate for the time interval zero to #*.
A perhaps less obvious problem is that it results in a
sampling bias. If we recruited animals before time #*, such
animals still present in the sample by time #* are biased
toward the less frail animals with lower hazards. Thus, the
staggered-entry GKME and NPCIFE are less robust than
their origin-entry counterparts, and researchers should make

every effort to insure that the risk sets are large for early
times (DelGiudice et al. 2006).

Compensatory Versus Additive Mortality

The additive nature of hazard functions also provides a
useful basis for assessing compensatory versus additive
mortality (sensu Bartmann et al. 1992) in wildlife pop-
ulations. Although hazard functions are mathematically
additive, mortality owing to a new (additional) source of
mortality is completely additive in the biological sense only
if the hazard functions for the existing sources of mortality
do not change in response to the addition of each new
source of mortality. Compensatory mortality (partial or
complete, see Boyce et al. 1999) is inferred when addition
(or removal) of a specific hazard to a population changes the
original (or remaining) hazard functions. One cannot
predict the impact of adding or removing a source of
mortality to overall survival probability without knowing
how the other hazard functions change in response to this
addition or removal.

Proportional Hazard Models

An important property of a hazard function A(#) or cause-
specific hazard function /4(#) is that it remains a hazard
function when multiplied by any positive constant. As a
counterexample, a probability multiplied by a constant does
not necessarily remain a probability if it exceeds 1, which it
easily can. Suppose X is some covariate of interest, such as
an animal’s sex (e.g., X=1 for F, X=0 for M). We could
test for a sex effect with the log-linear (multiplicative)
model log[4(A] = log[4(#)] + XB, where B is the sex effect.
Here 4(¢) is the baseline hazard function, which in the
example described above is the male hazard function. We
can also express this as A(#) = 6(H)exp(XP), where exp(p) is
the hazard ratio and measures A(#)/4(#). The null hypothesis
of no gender difference is equivalent to B = 1. Although

usually not stated as such, this is the hypothesis tested by
the usual log-rank test, although the log-rank test does not
involve estimating . Researchers can also test this
hypothesis using Cox partial likelihood (proportional
hazards approach), which also provides an estimate of P.
Proportional hazards models are useful both for comparing
cause-specific hazards, and also evaluating how covariates
(risk factors) influence hazard functions, both of which we
illustrate in our example.

Software for Estimating the NPCIFE

Most standard statistical packages do not contain procedures
for computing the NPCIFE or comparing the correspond-
ing differences between groups of animals or causes of
mortality. Although various codes for implementing the
NPCIFE are available for SPLUS, R, STATA, and SAS
(e.g., the emprsk suite of functions for SPLUS and R,
available at http://biowww.dfci.harvard.edu/~gray/, per-
form the calculations described by Gray [1988]), none allow
for left-truncation (staggered entry of animals) and are thus
of little applicability for most wildlife studies. However, the
computations for the NPCIFE are quite easy given the
output from a procedure that computes the GKME. It is
essentially a matter of bookkeeping, determining to which
cause of mortality to credit each GKME step. Appendix A
details the code required to automate the calculation of the
NPCIFE, and the associated estimate of variance, using a
staggered entry approach in SPLUS. Modifying this code to
run in R is straightforward.

Comparing CIFs from Different Causes

Tai et al. (2001) have summarized methods of comparing
CIFs. Unfortunately, none of these tests are valid for
datasets containing left-truncated data. Therefore, we
suggest the following procedures, based on Lunn and
McNeil (1995). The approach requires Cox regression
software that can accommodate delayed entry data (“count-
ing style input”), such as SAS PROC PHREG or SPLUS
coxph(). If there are Q sources of mortality, the data set is
duplicated Q times. In the 4th data set, all deaths but those
due to cause % are censored. One includes Q — 1 binary
dummy covariates Zy, . . ., Zg_1 in the analysis. For the 4th
data set, Z, =1 and is zero otherwise. By running models
with and without the Zs and performing a likelihood ratio
test, one is testing the hypothesis 41(£) = 5(2) . . . = hg(2)
against the proportional hazards alternative which is that at
least one hazard differs by some proportional constant. Like
the log-rank test, this test is only sensitive to proportional
cause-specific hazards alternatives and would not be
sensitive to situations where the hazards cross. Because of
this insensitivity to cause-specific nonproportional hazards,
we recommend graphic evaluation.
Previously, we defined

510 = exp - [/}

and noted that Sy(#) did not have a useful survival probability
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Table 1. Example of the data duplication technique discussed by Lunn and McNeil (1995) to perform a stratified Cox’s proportional hazards analysis
in SPLUS. Data shown are for 50 coyotes radiocollared in Nova Scotia, Canada, during 1992-1996 (Patterson 1999). We replicated each data record
for individual marked animals within the same data table, once for each of the causes of mortality under consideration. In this case, we generated
separate hazard functions for coyotes lost to harvest-related versus other causes of mortality as indicated by the field “c.strat.” The data recorded
below indicate that Animal 1 was censored at the end of year 1 (day 365), whereas animal 2 was lost to cause number 1 (harvest) on day 318.2

Anim.id Ent Exit Event Cause Year Sex C.strat
AMA1 248 365 0 1 1 M harvest
AMA1 248 365 0 0 1 M other
AM2 113 318 1 1 1 M harvest
AM2 113 318 0 0 1 M other

2 The full dataset is available http://www3.sympatico.ca/lbpatterson/Data/coydata.zip.

interpretation. Sy(#) is the quantity estimated by the 1-KM
procedure, that is, censoring all deaths but those due to 4.
Although §4(9 is not useful for estimating probabilities, it
provides a useful diagnostic for comparing the cause-specific
hazard functions 4,(#). In particular, if we have satisfied the
proportional cause-specific hazard assumption, plots of
log{—log[gk(t)}} versus # should produce curves separated
by a constant distance reflecting the log hazard ratio
between the two hazards. The shapes of both log[Sk(1)]
and log{—log[Sk(?)]} are useful for evaluating the func-
tional form of 4,(#). For example, log[S(¢)] will be linear
during intervals where 4,(#) is constant, and
log{—log[Sk(1)]} is linear for the class of accelerated failure
time models (Kalbfleisch and Prentice 2002).

Evaluating Risk Factors for Cause-
Specific Mortality

To allow the comparison of parameter estimates corre-
sponding to different mortality sources, Lunn and McNeil
(1995) proposed a simple adaptation of Cox’s proportional
hazards model. They replicated the entire dataset within a
single data table once for each cause of mortality and ran a
stratified analysis using cause of death as the stratification
factor (e.g., Table 1). The data replication is statistically
valid because the hazard functions for each mortality cause
are additive with their sum at any time # equaling the overall
(all-causes) hazard function (Lunn and McNeil 1995,
Therneau and Grambsch 2000). This allows the estimation
of separate hazard functions for each cause of mortality and
facilitates joint estimation of parameters in a competing
risks framework.

Lunn and McNeil (1995) presented methods for both an
unstratified and stratified Cox regression. The unstratified
Lunn and McNeil method assumes that the hazard
functions for different mortality sources are proportional,
whereas the stratified method allows for different baseline
hazards for each mortality type. In many wildlife studies
different mortality sources will be have substantially differ-
ent underlying hazard functions (e.g., DelGiudice et al.
2002), so we focus on the stratified method in the example
discussed below.

Because the hazard functions described above are instanta-
neous risk functions, they do not quantify the ultimate effect
of covariates on the overall magnitude of individual mortality

sources (i.e., they do not describe the overall mortality cdf).
For example, the instantaneous hazards for multiple mortal-
ity sources may cross at various points in time, making visual
assessment of likely covariate effects on the cumulative
hazards difficult. In response to this concern, Tai et al.
(2001) extended the Lunn and McNeil (1995) approach to
accommodate the analysis of competing risks based on the
NPCIFE. Similarly, Fine and Gray (1999) developed
methods for estimating cause-specific CIFs under a semi-
parametric log(-log) transformation model. Simulations
indicated that the partial likelihood principle and weighting
technique they employed yielded valid estimates under a
variety of censoring scenarios. They further outlined how to
construct confidence intervals based on both analytical and
simulation-based techniques. Although potentially appeal-
ing to the mathematically astute, the methods proposed by
Fine and Gray (1999) are not as easily implemented as the
methods of Lunn and McNeil (1995) or Tai et al. (2001),
particularly for left-truncated data.

Example and Discussion

We use data from a telemetry study of coyotes in Nova
Scotia (Patterson 1999) to illustrate the methods discussed
here. We monitored 50 radiocollared coyotes in 2 study
areas that differed substantially with respect to prey densities
and typical winter severities (Patterson 1999). We prepared
data for analysis as in Table 2. The full dataset is available
http://www3.sympatico.ca/lbpatterson/Data/coydata.zip.
Coyotes entered the analysis from September 1992 to 1996
on the day after we radiocollared them and exited when they
died (n=28) or when we censored them on the day of last
radio contact (7 = 9). We censored all coyotes still being
monitored when the study terminated on 30 April 1997 (n=
13). We assumed the biological year for coyotes extended
from 1 May to 30 April and calculated annual estimates of
8(#) and M(#) by pooling data among years. Most deaths of
collared coyotes were due to human related causes (primarily
shooting and snaring; Patterson 1999), so we consider here
only 2 competing risks: 1) harvest, and 2) other causes.

We calculated cause-specific mortality estimates of M W(D*
based on the 1-KM method and generated the estimates
§k(t) using a null Anderson—-Gill proportional hazards
model in SPLUS using the following code:
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Table 2. Example of the data structure used to estimate S(f), marginal survival distributions based on the 1-KM method (see text), and the NECIF
(Appendix) in SPLUS for 50 coyotes radiocollared in Nova Scotia, Canada, during 1992-1996 (Patterson 1999).%

Anim.id Study area Sex Age Year Ent Exit Event Cause
AMA 1 2 2 2 0 75 1 oth_hum
AM12 8 2 2 5 0 177 1 natural
AM7 8 2 2 4 0 304 1 oth_hum
PM5 8 2 0 8 182 186 1 oth_hum
AF7 2 1 2 4 0 254 1 natural
PF14 2 1 0 4 190 263 1 natural
AF10 2 1 2 4 198 268 1 harvest
AF11 2 1 2 4 208 215 1 harvest
AF12 2 1 2 5 147 192 1 harvest
AF4 3 1 2 3 16 295 1 harvest
AF6 2 1 2 3 166 348 1 harvest
AM11 8 2 2 5 0 825 1 harvest
AM2 2 2 2 3 0 290 1 harvest
AM4 2 2 2 5 0 276 1 harvest
AM5 8 2 1 3 0 290 1 harvest

@ The full dataset is available http://www3.sympatico.ca/Ibpatterson/Data/coydata.zip.

Surv.c.1<-coxph(Surv(ent,exit,event) ~1,data = file name)

where the fields “ent” and “exit” represent the day of entry
and exit into the study each year, and “event” was an
indicator variable detailing if we censored the animal in
question or if it died during the year detailed by each record.
We generated the NPCIFE using the code detailed in
Appendix A. We calculated seasonal rates by creating
subsets of the data containing only exposure days for each
collared coyote falling within the respective season.

Annual mortality owing to human-related causes was
approximately 24% (Fig. 1) and estimates of harvest-related
and other mortality based on the NECIF were slightly lower
than those estimated using the 1-KIM method (Fig. 1).

Arranging the data as in Table 1 and running the
following stratified Cox PH model:

<-coxph(Surv(ent,exit,event) ~studarea + sex -+ age +
cluster(id) 4+ strata(c.strat)

we tested for the influence of covariates sex, age, and study
area on the 2 cause-specific hazards. This analysis suggests
that risk of mortality is lowest for adult coyotes (Risk ratio
[RR] =0.52, 95% CI = 0.306 to 0.883), whereas we could
not detect a significant influence of study area (RR =1.33,
95% CI=0.84to 2.11) or sex (RR=2.05,95% CI=0.87 to
4.84) on risk of death. More specifically, the approach of
Lunn and McNeil (1995) allows for easy estimation of cause-
specific coefficients. For example, having determined that
age had a significant influence on survival probability, we
next asked whether the effect of age was similar for harvested
coyotes versus those dying of other causes. We investigated
this by coding two dummy variables:

> agel<-cysxStrage*(cysxStréc.strat =="1")
> age2<-cysxStr$age*(cysxStréc.strat! =’1")

and then running the following model:

coxph(Surv(ent,exit,event) ~studarea + sex + agel + age2 +
strata(c.strat)

This analysis indicated that age primarily influenced
probability of mortality due to harvest (RR = 0.498, 95%
CI=0.304 to 0.816), and had less influence of probability of
dying of other causes (RR = 0.621, 95% CI = 0.230 to
1.676).

For comparison, we used the software program MICRO-
MORT (Heisey and Fuller 1985) to implement the HF
method of determining cause-specific mortality and survival
rates. Because most mortality occurred between October and
April each year, we divided the year into 2 seasons for
analysis with HF: May—-September and October—April. For
analysis with the HF method, we tallied the number of
radiodays of contact for each interval and recorded all
deaths. The results for the NPCIFE and HF were quite
similar (Table 3). The smaller confidence intervals associ-
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Figure 1. Cumulative probability of mortality owing to harvesting by
humans (primarily hunting and trapping) and by other causes (e.g. road-
kill, natural mortality, unknown) for 50 coyotes radiocollared in Nova
Scotia, Canada, during 1992-1996 (Patterson 1999). For each cause of
death, we estimated probability of mortality using both the 1-KM and
the NECIF approaches (see text for details).
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Table 3. Comparison of overall survival and cumulative hazard rate estimates for mortality owing to harvesting by humans (“harvest”; primarily
hunting and trapping) and by other causes (“other”; e.g. road-kill, natural mortality, unknown) for 50 coyotes radiocollared in Nova Scotia, Canada,
during 1992-1996 (Patterson 1999). For each cause of death, we estimated cumulative hazards using both the 1-KM and the NECIF approaches

(see text for details).?

May-Sep Oct-Apr Annual
Rate 95% ClI Rate 95% ClI Rate 95% ClI

Heisey—Fuller method

S(t) 0.961 0.909, 1.0 0.668 0.572, 0.780 0.642 0.544, 0.757

my; (harvest) 0.281 0.182, 0.380 0.270 0.174, 0.366

my (other) 0.039 0, 0.092 0.051 0.002, 0.100 0.088 0.019, 0.157
NPCIFE

S(t) 0.965 0.925, 0.995 0.714 0.608, 0.780 0.679 0.617, 0.744

my; (harvest) 0.242 0.168, 0.316 0.242 0.168, 0.316

my; (other) 0.035 0.005, 0.075 0.044 0.002, 0.086 0.079 0.027, 0.131

2 The full dataset is available http://www3.sympatico.ca/lbpatterson/Data/coydata.zip.

ated with the NPCIFE are somewhat puzzling and probably
reflect slight differences in how we performed the variance
approximations. Simulations would be useful to examine the
accuracy of the confidence interval coverages.

Given the relatively close correspondence between the
estimates produced by the 1-KM and NECIF estimators,
one question that naturally arises is whether the bias
associated with the 1-KIM estimator of cause-specific
mortality is serious enough to be of practical concern. We
can gain insight into this by considering a simple case where
hazards are constant over time (or age). Assume the hazards
for two sources of mortality are A; and 5, so the total hazard
is h = h1 + hy and the relative hazard (i.e. proportion of
deaths expected) due to cause 1 is ; = A1/A. Overall survival
is 8(#) = exp(—A4). The NPCIFE for cause 1 is a consistent
estimator of M;(#) = r1[1 — 8(#)]. Clearly, as time # grows
large, this quantity approaches the relative hazard due to
cause 1, 1. 1-KM is a consistent estimator of M*(£) =1 —
exp(41£). We cannot give this any reasonable definition as an
observable probability (Kalbfleisch and Prentice 2002). As #
grows large, this quantity approaches 1. Note that this
quantity can also be expressed as M*1(£) =1 — S(#)exp(—r12).
The ratio of M*1(#)/ M;(#) defines the expected relative bias
B(#) of 1-KM relative to the NECIF, and we can express it
solely as a function of time # and the relative hazard rq:

1 —8(¢)exp(—r12)
1= 8(2)]

B (1)

The expected relative bias for relative hazards of 6 = 0.20,
6 =0.50, and 6 = 0.70 is shown in Fig. 2. In all cases, as #
grows large, the relative expected bias B(#) approaches 1/7;.
This illustrates several general points. First, assuming
constant hazards, the relative bias of 1-KIM relative to the
NPCIFE increases as the total mortality increases. Fur-
thermore, the relative bias of 1-KIM versus the NPCIFE has
an inverse relationship to the relative contribution of the
mortality source in question. That is, relative bias will be
greatest for mortality sources that represent only a small

fraction of overall mortality. Most importantly, these biases
are non-negligible for a wide range of biologically realistic
total mortalities and relative hazards (Fig. 2). This under-
scores the statement by Gooley et al. (1999) that
“Determining whether to use 1-KM or CIF is unambiguous
and CIF should always be used if an estimate of the
probability of failure of a specific type is desired.”

As noted, both the NPCIFE and HF have their short-
comings. Especially when applied to staggered entry data,
the NPCIFE can be overparameterized. The result is that in
some cases, the NPCIFE may have unacceptable high
variances or even be undefined. On the other hand, HF
requires arbitrary interval construction, which can lead to
biases if misplaced. As mentioned previously, the single best
criterion of an estimator is the MSE, which balances
variance and bias. Compromise models, models that are
smoother than strictly nonparametic models, but not “too”
smooth, typically achieve optimal MSEs. In survival
analysis, a popular approach is to model the hazard as a
spline function; in fact, the piecewise HE model is a
simplistic spline hazard model (a 0-order 4-spline). Spline
models can be of 2 types, smoothing splines and regression
splines. Regression spline models require the arbitrary
placement of knots; HF is a regression spline model.
Smoothing spline models do not require knot placement but
are generally computationally more demanding. Penalized
regression spline (PRS) models provide a useful compro-
mise. Although the researcher must still decide on knot
placement for PRS models, parsimony is not an issue and
the researcher should initially specify more knots than are
likely to be necessary. Researchers prevent over-parameter-
ization by adding a roughness penalty term in the log
likelihood. Then, using a criterion such as AIC (e.g., Heisey
and Foong 1998), researchers apply an optimal smoothing
factor to the spline approximation to prevent wild variation
of the hazard due simply to sparse data. This approach is
similar to Bayesian approaches; the penalty acts in much the
same manner as would a prior distribution imposed on the
hazard function. We believe such regularization approaches
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Figure 2. The relative bias of 1-KM compared to the NECIF. We show 3
values of the relative hazard: 6 =0.20 (solid line), 6 =0.50 (small-dashed
line), and 6 =0.70 (large-dashed line). We explain the vertical lines in the
text.

arguably offer the most promising future direction for CSM
analyses.

We estimated the penalized likelihood estimate (PLE) of
the instantaneous human-causes hazard, 44(#), using pro-
gram PHMPL (Joly et al. 1998, 1999) to illustrate seasonal
changes in the instantaneous risk of coyotes being killed by
humans. We assigned 17 knots and allowed PHMPL to
determine the smoothing parameter automatically (Fig. 3;
Joly et al. 1998, 1999). The instantaneous hazard could also
have been easily estimated using a kernel-based approach
implemented by the SPLUS code “muhaz” (Mueller and
Wang 1994), available for download at http://odin.mdacc.
tmc.edu. For brevity, we do not present the resulting cause-
specific mortality estimates, but they are relatively easy to
obtain via Eq. 4 and 8. Bootstrapping is the best method to
obtain variances.

Management Implications

The statistical issues involved in cause-specific mortality
estimation can be rather complex, and intuition does not
always serve one in good stead as exemplified by the
frequent misuse of the 1-KM estimator. Survival analysis
remains a relatively specialized domain with a human
biomedical emphasis, and most survival analyses courses in
biostatistics or public health departments teach from that
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perspective. From a statistical standpoint, the issues of
survival analysis such as truncation and censoring are
unique, and many otherwise well-trained statisticians may
have little exposure to these techniques. Wildlife researchers
working with survival data should seek out the assistance of
biostatistical survival analysis experts; some will welcome the
novelty of nonhuman applications. Wildlife graduate
students should be encouraged to pursue biostatistical
survival analysis coursework, even if the focus is on human
applications.

In the meantime, managers will continue to require good
estimates of the magnitude of various mortality sources for a
variety of wildlife species, and the NPCIFE will often meet
that need. The NPCIFE is simple, yet not widely
implemented, probably because of a lack of readily available
software for performing the required calculations. A draw-
back of using CIFs to estimate cause-specific mortality
functions is that they do not treat different causes of
mortality jointly, thus complicating comparison of param-
eter estimates corresponding to different mortality sources.
However, an attractive feature of the NPCIFE is that it
meshes naturally with proportional hazards models such as
those presented by Lunn and McNeil (1995) to allow
assessment of relative impact of a covariate(s) on various
mortality sources (e.g. assessing the impact of forest
harvesting on losses of moose to hunters vs. natural
predators).
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Appendix. Calculating cause-specific
cumulative incidence functions in SPLUS.

# Script for creating table of cumulative
survival

# run the following script, then attach the
table of survival to the current

# data frame. The fields must have the names
“ent", “exit", “event” and “cause"

##allin Tower case letters. Once the script
is run, there will be a function in your
current chapter

# cause.survival. Usage of this function is
cause.survival(table, causenumber).

## Where table is the table with the data,
causenumber is an integer value used to
identify the cause of mortality.

"cause.survival.v2”=function(table, p)

{
assign("p", p, frame=1)

## create tables to hold the results of GKM
survival estimates for all events and for
cause specific event

temp.all <- summary(survfit(Surv(ent,
exit, event) ~ 1, data=table))
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temp.s <- summary(survfit(Surv(ent, exit,
cause=p) ~ 1, data=table))

ffcombine the two tables so survival of all
events can be combined with those of the
cause specific events

s.df <- data.frame(time = temp.s$time,
n.event = temp.s$n.event, n.risk =
temp.s$n.risk, survival =temp.s$surv)

all.df <- data.frame(time =
temp.all$time, n.event =
temp.all$n.event, n.risk =

temp.all$n.risk, survival =
temp.all$surv)

all.s.df <- merge(all.df, s.df, by.x =
“time", by.y=“time", all.x=T, suffixes =
c(”.all", “.s"))

assign("n", all.s.df, frame=1)

X <- numRows (n)

fficreate temporary placeholders for the
calculation of the mortality rate and the
cause-specific cumulative incidence func.
tmp.string <- numeric(x)

tmp.string2 <- numeric(x)

t<-1

ficycle through the records of the table,
including all events to calculate
mortality rate and CIF

while(t <=x) {

tmp.stringl[l] <- n$n.event.s[1]/
negn.risk.sC1]

tmp.string[t] <- (n$survival.all[t -1]*
né$n.event.sftl)/n$n.risk.slt]
if(tmp.string[t] = “NA") tmp.string2[t]

<- NA else tmp.string2l[t] <-
sum(tmp.stringll:t], na.rm=T)

t=t+1

}

MORT <- data.frame(mort.rate =

tmp.string)
CIF2 <- data.frame(CIF=tmp.string?)
CIF.s.all <- cbind(all.s.df, MORT, CIF2)
# Calculate the variance, standard error
and the Confidence Intervals around CIF
SE <- numeric(x)
totvar.t <- numeric(x)
#fiReset all temporary variables
t<-1
j<-1
Ij<-0
cumvar.pl <- 0
cumvar.p?2 <- 0
cumvar.p3 <- 0
#1oop for the total number of records
while (t <=x)
{
It <-CIF.s.all$CIF[t]
Tf(It=“NA") {

CIF.s.all$cumvar[t] <- “NA"
CIF.s.al1$StdErr[t] <- “NA"
CIF.s.all$CI.ult] <- “NA"
CIF.s.all$CI.1[t] <- “NA"
t=t+1
}
else
{
while (j <1t)
{
if(CIF.s.all$CIF[j] =“NA")
Ij<-1]
else
Ij<-CIF.s.all$CIFLj]
cumvar.pl <- cumvar.pl + (It - Ij)yz2 *
(CIF.s.all$n.event.allljl/
(CIF.s.all$n.risk.allljgl =
(CIF.s.all$n.risk.allljl -
CIF.s.all$n.event.allljl)))
if(CIF.s.alT1$CIFLj] I=“NA")
if(j=1)
Sj3<-1
else

Sj3<-CIF.s.all$survival.all[j-11]

Ijce <-CIF.s.all$CIF[j]

cumvar.p3 <- cumvar.p3 + (It -
I1jc)*(Sj3)*(CIF.s.all$n.event.all[j]
(CIF.s.all$n.risk.all1ljl)2)

~

}
J<-J+1
}
if(t=1)

Sje<-1
else

Sj2 <- CIF.s.all$survival.all[t-1]
cumvar.p? <- (Sj2)~ *
(((CIF.s.all$n.event.all[t])*(CIF.
s.all$n.risk.allTlt]
CIF.s.all$n.event.alll[tl))/
(CIF.s.all$n.risk.all[t])3) + cumvar.p?2
f##total all three components of the
variance equation to get the final
variance, generate std. err and
confidence intervals
#fAssign all results to the output table
totvar.t[t]l <- cumvar.pl-+cumvar.p2 - (2
* cumvar.p3)
CIF.s.all$cumvar[t] <- totvar.t[t]
SE[t] <- sgrt(totvar.tlt])
CIF.s.all$StdErr[t] <- SE[t]
CIF.s.al1$CI.ult]l<-CIF.s.all$CIFLt]+
(1.64 *SE[t])
CIF.s.al1$CI.1[t]1<-CIF.s.all$CIF[t] -
(1.64 *SE[t])
t=t+1
j<-1
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} }
cumvar.pé <- 8 f#Variance calculations end here
cumvar.p3 <-

Ij<-0 return(CIF.s.all)

It <-0 }
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